Modeling phenol biodegradation with Pantoea agglomerans as plant-growth-promoting bacteria
Abstract
In the current investigation, the potential of using the bacterial species Pantoea agglomerans for phenol biodegradation was evaluated. The inhibitory effects of various doses of phenol (ranging from 200 to 1200 ppm) on the growth of P. agglomerans and the biodegradation rate were evaluated. The effects of temperature and pH were also investigated in order to determine the ideal parameters for maximum phenol biodegradation. Additionally, the ideal parameters for growth rate and beginning phenol content were determined using mathematical modeling employing modified Gompertz and Haldane models. The half-saturation coefficient (Ks) for Haldane and the maximum specific growth rate (max) for phenol-dependent growth kinetics (Ki) has been calculated to be 480.23 mg/L, 188.17 mg/L, and 0.887 mg/L, respectively. The Haldane equation can be applied to empirical data because of its tiny sum of squared error (SSR), which is 1.39 x 10-3. Additionally, the reformulated Gombertz model effectively predicts trends in the degradation of phenol. The starting amount of phenol impacted both the degradation rate and the period of lag time, and both of them raised further as the phenol level got higher. A 28°C incubation temperature and a pH of 7.0 were determined to be the ideal conditions for Pantoea agglomerans to grow and degrade phenol. The GC-MS data showed that many phenol derivatives were produced due to phenol degradation, such as catechol, 2-hydroxymucconic semialdehyde, and pyruvate. This may provide strong evidence that the degradation of phenol by P. agglomerans occurred via a meta-pathway.
Keywords: Phenol, Biodegradation, Pantoea agglomerans, Meta-pathway, Catechol, Mathematical modeling
How to cite this article:
Citation Formats:
Contact Meral
Meral Publications
www.meralpublisher.com
Davutpasa / Zeytinburnu 34087
Istanbul
Turkey
Email: [email protected]