Original Article

Investigation of HPLC behaviour and system suitability estimation for combination Galantamine Hydrobromide and Pymadine

Dobrina Tsvetkova*, Stefka Ivanova

Medical University-Sofia, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 2 Dunav Str., Sofia 1000, Bulgaria.

Correspondence: Dobrina Tsvetkova, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Sofia, Dunav str. N: 2, 1000, Sofia, Bulgaria. E mail: dobrinka30@mail.bg

ABSTRACT

The aim of the current study was the investigation of HPLC behaviour, separation and system suitability for the combination of Galantamine hydrobromide/Pymadine in model mixtures, in accordance with the new trend of multi-target therapy of Alzheimer's disease by combining acetylcholinesterase inhibitor with its potential synergist. The system suitability test for the simultaneous determination of the components was carried out by the following criteria: 1) retention times in the analysis of 6 model mixtures; 2) the change of values for separation degrees in minor changes of the ratio of mobile phase components and mobile phase flow rates. The system suitability was confirmed by the lack of the statistically significant differences between the values of parameter retention time t_R [min.]: t_R = 3.179 (Galantamine hydrobromide), t_R = 5.272 (Pymadine). In changing the ratio of mobile phase components, the data for separation degree were in the range of 1.76 \div 1.83, and the symmetry factor (T) was in the range of 0.94 \div 1 (Galantamine hydrobromide), 0.96 \div 1.03 (Pymadine). Upon varying the mobile phase velocity, T values varied between 0.94 \div 1 (Galantamine hydrobromide) and 0.95 \div 1.06 (Pymadine). The system suitability was confirmed by the fact that minor changes in the ratio of the mobile phase components or in the mobile phase flow rate didn't decrease the degree of separation.

Keywords: HPLC, Galantamine hydrobromide, Pymadine, system suitability

Introduction

Alzheimer is a chronic progressive neurodegenerative disease ^[1] in which the amyloid plaques, neurofibrillary tangles and oxidative stress lead to cholinergic neurons loss in brain, and cause a disorder of higher cortical functions and cognitive impairements ^[2]. Free-radical processes damage biomarker molecules: proteins, lipids, nucleic acids (DNA, RNA) leading to nerve cell damage and apoptosis, and they are one of the causes of pathogenetic changes ^[3, 4].

Access this article online				
Website: www.japer.in	E-ISSN: 2249-3379			

How to cite this article: Dobrina Tsvetkova, Stefka Ivanova. Investigation of HPLC behaviour and system suitability estimation for combination Galantamine Hydrobromide and Pymadine. J Adv Pharm Edu Res 2019;9(2):82-88.

Source of Support: Nil, Conflict of Interest: None declared.

The conventional treatment strategy for Alzheimer's disease has been an application of acethylcholinesterase inhibitors, like natural alkaloid Galantamine (Fig. 1.) ^[5]. A potent inhibitory activity against acetylcholinesterase possess extracts of *Ocimum sanctum* ^[6] and *Cinnamon zeylanicum* ^[7].

Galantamine leads to the enhancement of concentration in Alzheimer^[8] with cerebrovascular disease, vascular dementia and ischemia^[9] due to its antioxidant effects^[10, 11], decreases neurodegeneration, and protects against β -amyloid toxicity, due to its action as a reversible acethylcholinesterase inhibitor, and an allosteric nicotinic receptors modulator^[5], and improves memory alone, and in combination with 4-aminopyridine (Pymadine)(Fig. 1.)^[12]: Nivalin P^[13]. 4-aminopyridine is a drug for symptomatic multiple sclerosis treatment, and increases the acetylcholine release^[14].

A new trend in Alzheimer's disease treatment has been the combination of Galantamine/Pymadine due to the potential synergy of their pharmacological effects ^[14].

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Figure 1. Chemical structures of Galantamine hydrobromide and 4-aminopyridine.

HPLC methods are often applied for analysis of different drugs: Amlodipine besylate ^[15], Lansoprazole and Aspirin ^[16], Pantoprazole and Mosapride ^[17], Olmesartan Medoxomil, Atorvastatin calcium ^[18], and Cefadroxil Monohydrate ^[19]. For analysis of Galantamine hydrobromide substance, HPLCmethods with mass-detection ^[20] and UV-detection ^[20-23] at $\lambda = 225$ nm ^[21] and $\lambda = 289$ nm ^[23] have been developed.

4-aminopyridine in plasma has been analysed by HPLC $^{\rm [24]},$ gas chornatography $^{\rm [25]},$ and capillary electrophoresis $^{\rm [26]}.$

The aim of the current study was the investigation of HPLC behaviour, separation and system suitability in combination of Galantamine hydrobromide/Pymadine in model mixtures.

Materials

- Pharmacopoeial purity compounds were investigated including: Galantamine hydrobromide (Sopharma, N: 10796132); 4-aminopyridine.
- II. Reagents with pharmacopoeal purity were studied including: disodium hydrogen phosphate (99.5 %) (Merck, N: K28661174105).
- III. Solvents with pharmacopoeial purity were investigated including: acetonitrile (99.9 %) (Sigma Aldrich, N: SZBD 150 SV UN 1648), methanol (99.9 %) (Sigma Aldrich, N: SZBD 063AV UN 1230), distilled water.

Methods

HPLC-method was used for simultaneous determination of Galantamine hydrobromide and Pymadine in model mixtures.

I. Equippment

HPLC system Shimadzu LC-10 Advp Liquid Chromatograph, fixed-length wavelength SPD 10 AVP UV-VIS detector were used.

II. Chromatographic conditions.

The chromatographic conditions applied were: isocratic mode, stationary phase: column RP C₁₈ ODC Spherisorb (250 mm × 4.6 mm × 5 Mm), column temperature: 25 °C, mobile phase: 50 mM disodium hydrogen phosphate: acetonitrile = 80:20 v/v, flow rate: 1.5 ml/min., UV-detection at π = 280 nm, injection volume: 20 µl. The column was equilibrated for 30 min with degased mobile phase.

III.	Preparation	of	mod	del	mixtures	of
	reference	subs	tance	es:	Galantam	ine

hydrobromide and 4-aminopyridine

6 model mixtures were prepared at the following manner: from reference substances an accurately messured quantities: 0.1 g Galantamine hydrobromide and 0.05 g 4-aminopyridine were dissolved in destilled water in 100.0 ml volumetric flasks.

Results and Discussion

I. Selectivity

In the same manner like model mixtures, a blank solution without Galantamine hydrobromide and Pymadine was prepared for the estimatiton of analytical parameter selectivity, which was proved by the fact that in chromatograms of blank solutions, there were not observed peaks with retention time, corresponded to retention times of Galantamine hydrobromide and Pymadine.

II.	Investig	gation	of	chrom	natographic
	behavio	or of Ga	alantan	nine hyd	drobromide
	and	Pyma	dine	in	different
	chroma	atograph	nic syst	ems	

For the selection of a chromatographic system for separation of mixture components, the chromatographic behavior of Galantamine hydrobromide and Pymadine was investigated with isocratic HPLC-method, stationary phase: 250 mm× 4.6 mm× 5 μ m and other different chromatographic conditions.

Results were summarized on Table 1. that inducates: C - concentration, $t_{R}-$ retention time, A - peak area, H - peak hight.

Table 1. Chromatograp	Table 1. Chromatographic behavior of Galantamine hydrobromide and Pymadine at different					
	chromatographic systems.					
C [g/ml]		t _R [min.]	Α	Н		
metha	nol:acetonitrile:wat	ter = 70:20:10v/v; 1 ml/mir	n.; 25 °C; λ = 288 nm			
Galantamine hydrobromid e	1.10-4	3.374	325950	8847		
Pymadine	1.10-3	3.085	5949137	127165		
Galantaminehydrobromide	5.10^{-3}	3.301	22848681	478908		

Journal of Advanced Pharmacy Education & Research | Apr-Jun 2019 | Vol 9 | Issue 2

Pymadine 5.10 ⁻³			
methanol:acet	tonitrile = 70:30 v/v; 1 ml/min.; 2	5 °C; λ = 282 nm	
Galantamine hydrobromide 1.10 ⁻³	2.903	2501296	74015
Pymadine 1.10 ⁻³	2.736	14352632	391237
Galantamine hydrobromide 1.10 ⁻³	2 001	12104507	205740
Pymadine 1.10 ⁻³	2.991	1516+567	505740
methanol:ace	tonitrile = 10:90 v/v;1 ml/min.; 2	5 °C; λ = 288 nm	
Galantamine hydrobromide 1.10 ⁻³	3.092	1388930	35093
Pymadine 5.10 ⁻⁴	2.673	1536717	42872
Galantamine hydrobromide 2.5.10 ⁻⁴	2.087	9/1911	210/7
Pymadine 5.10 ⁻⁴	2.987	801811	21007
50mM disodium hydrogen	bhosphate:acetonitrile = 50:50 v/v;	1 ml/min.; 25 °C; л= 280	nm
Galantamine hydrobromide 1.10 ⁻³	2.737	23302359	768816
Pymadine 5.10 ⁻⁴	2.721	9976943	312689
Galantamine hydrobromide 2.5.10 ⁻⁴	2 729	14907914	472292
Pymadine 5.10 ⁻⁴	2.729	14007014	+75582
Galantamine hydrobromide 2.10 ⁻³	2 774	17044039	5412379
Pymadine 1.10 ⁻³	2.771	17011032	5112575

The results included in Table 1., showed that the retention times of Galantamine hydrobromide and Pymadine were close, and that only one peak was obtained in analyzing the model mixture, therefore these systems weren't suitable for separation of the components. degree of separation for isocratic HPLC, and chromatographic systems, by which two peaks were obtained in the analysis of the model mixtiures with Galantamine hydrobromide and Pymadine.

Table 2. presents the data for: t_R – retention time, A – peak area, H – peak height, N – number of theoretical plates and Rs

Table 2. Chromatographic param	eters of Galan	tamine hydro	bromide and	Pymadine at	different		
	chromatogra	aphic systems	•				
Parameters	t _R [min.]	А	Н	Ν	Rs		
methanol:acetonit	rile:water = 70:20):10v/v;1 ml/mir	$h.;25 ^{\circ}C; \lambda = 220$	nm			
Pymadine	3.504	2010320	58877	215	0.02		
Galantamine hydrobromide	4.697	6015356	141670	183	0.92		
methanol:	water = $50:50 \text{ v/v}$; 1 ml/min.; 25 °	C;λ=288 nm				
Pymadine	3.245	1029411	43111	889	0.44		
Galantamine hydrobromide	3.461	2188596	113306	484	0.++		
methanol:	water = $95:5 \text{ v/v}$;	1 ml/min.; 25 °C	C;λ=288 nm				
Pymadine	3.469	913993	36690	361	0.1		
Galantamine hydrobromide	3.617	905668	37048	400	0.1		
50mM disodium hyd	rogenphosphate: ac	cetonitrile= 80:20) v/v; 1 ml/min.;2	25 °C;			
	л= 2	244 nm					
Pymadine	3.071	8011684	235963	196	0.52		
Galantamine hydrobromide	3.890	3578087	104476	165	0.55		
50 mM disodium hydroger	50 mM disodium hydrogenphosphate:methanol = $80:20 \text{ v/v};1 \text{ ml/min.}; 25 ^{\circ}\text{C}; \pi = 280 \text{ nm}$						
Pymadine	3.307	483035	15498	369	0.90		
Galantamine hydrobromide	3.917	252838	8177	256	0.89		
50 mM disodium hydrogen	phosphate:acetonit	rile = 90:10 v/v;	1 ml/min.;25 °C	;л= 280 nm			
Pymadine	3.550	844190	22462	144	0.59		
Galantamine hydrobromide	4.498	1176047	28695	104	0.32		

The values for parameter (Rs) given in Table 2. were lower than 1, demonstrating that these systems didn't achieve separation of Galantamine hydrobromide and Pymadine. For the separation and simultaneously identification and

determination of the components of the model mixture of Galantamine hydrobromide and Pymadine, HPLC is suitable with isocratic mode of operation on the chromatographic system: stationary phase; column RP of (250 mm× 4.6 mm × 5 μ m); column temperature of 25 °C; mobile phase of 50 mM disodium hydrogenphosphate:acetonitrile = 80:20 v/v; flow rate of 1 ml/min.; and UV-detection at λ = 280 nm.

III. System suitability test

The suitability test was eatimated on the basis of ICH requirements and criteria ^[27, 28]. The system suitability test for

the simultaneous determination of Galantamine hydrobromide and Pymadine was carried out by following criteria: 1) retention times in the analysis of 6 model mixtures; 2) change of degree of separation (Rs) in minor change of the ratio of mobile phase components, and of mobile phase flow rate.

The results for retention times t_R [min.] for Galantamine hydrobromide and Pymadine in model mixtures have been presented in Table 3.

Table 3. Retention times t _R [min] for Galantamine hydrobromide and Pymadine in model mixtures.					
N:	Galantamine hydrobromide	Pymadine			
Model mixture	t _R [min.]	t _R [min.]			
1.	3.188	5.223			
2.	3.180	5.218			
3.	3.175	5.231			
4.	3.173	5.522			
5.	3.181	5.238			
6.	3.175	5.198			
$\overline{\mathbb{X}}_{\pm SD}$	$3.179 \div 0.006$	$5.272 \div 0.12$			
RSD [%]	0.19	2.28			

The system suitability was confirmed by the lack of a statistically significant difference between the values of the chromatographic parameter retention time for the components in the analysis of 6 samples: $t_R = 3.179$ (Galantamine hydrobromide), $t_R = 5.272$ (Pymadine) (Table 3.).

The chromatograms of model mixtures obtained with HPLC system for the minor change of the ratio of mobile phase components, and the minor change of mobile phaseflow rate are illustrated in Fig. 2. (80:20 v/v), Fig 3. (77:23 v/v), Fig.4. (83:17 v/v).

Detector A Ch1 280 nm

Peak#	Ret. Time	Area	Height	Area%	Height%
1	4.007	7395992	198703	46.936	41.377
2	8.388	8361609	281525	53.064	58.623
Total		1557602	480228	100.000	100.000

Detector A Ch1 280 nm

Peak#	Ret. Time	Area	Height	Area%	Height%
1	3.171	4625460	129061	35.616	37.849
2	5.225	8361608	211925	64.384	62.151
Total		12987069	340986	100.000	100.000

Figure 2. Chromatograms of solutions containing Galantamine hydrobromide and Pymadine in system: 80:20 v/v = 50 mM disodium hydrogenphosphate: acetonitrile; 25 °C; $\lambda = 280 \text{ nm}$.

Detector A Ch1 280 nm

Peak#	Ret. Time	Area	Height	Area%	Height%
1	3.186	4752161	132904	35.770	37.767
2	5.251	8533279	218996	64.230	62.233
Total		13285440	351900	100.000	100.000

Detector A Ch1 280nm

Peak#	Ret. Time	Area	Height	Area%	Height%
1	3.214	8779689	248809	47.427	44.789
2	4.605	9732316	306700	52.573	55.211
Total		18512005	555509	100.000	100.000

Figure 3. Chromatograms of solutions containing Galantamine hydrobromide and Pymadine insystem: 77:23 v/v = 50 mM disodium hydrogenphosphate: acetonitrile; 25 °C; $\lambda = 280 \text{ nm}$

0.8 ml/min.

Peak# Ret. Time Height% Area Height Area% 3.245 2858815 80981 38.700 40.001 1 2 5.308 4528361 121468 61.300 59.999 Total 7387176 202449 100.000 100.000

Detector A Ch1 280nm

Peak#	Ret. Time	Area	Height	Area%	Height%
1	3.184	5270563	148308	38.393	40.465
2	5.220	8457360	218200	61.607	59.535
Total		13727923	366508	100.000	100.000

Figure 4. Chromatograms of solutions containing Galantamine hydrobromide and Pymadine in system: 83:17 v/v = 50 mM disodium hydrogenphosphate : acetonitrile; 25 °C; $\lambda = 280 \text{ nm}$.

Results for system suitability test were shown in Table 4., where:

N/m –number of the theoretical plates at the peak width of baseline and column length 1 m

T – tailing factor

 ${\rm f}-{\rm distance}$ from the beginning of the peak to the intersection of peak height with

peak width at 5% of the peak height

- As asymmetry factor
- S symmetry factor

Detector A Ch1 280 nm

	2			10111111111	, massine mixed	105.	
t _R [min.]	А	Н	N/m	Rs	T = W 0.05	A a A 0.1	
	[AU]	[AU]			$I = \frac{1}{2.f}$	$AS = \frac{1}{B \ 0.1}$	$s = \frac{1}{N}$
v = 50 mM di	sodium hydrog	genphosphate	acetonitr	le;1 ml/mir	а.; 25 °C: л = 280 m	m	
3.188	5493395	151586	464		1	0.92	0.
	$t_{\rm R} \text{ [min.]}$ $t_{\rm V} = 50 \text{ mM di}$ 3.188	A $t_{R} [min.] \qquad [AU]$ $(v = 50 \text{ mM disodium hydrog}$ $3.188 \qquad 5493395$	$\frac{A}{t_{R} [min.]} \frac{A}{[AU]} \frac{H}{[AU]}$ $\frac{V}{V} = 50 \text{ mM disodium hydrogenphosphate}$ $\frac{3.188}{5493395} \frac{5493395}{151586}$	$\frac{A}{t_{R} [min.]} \frac{A}{[AU]} \frac{H}{[AU]} \frac{N/m}{A}$ $\frac{V_{V} = 50 \text{ mM disodium hydrogenphosphate:acetonitri}}{3.188} \frac{5493395}{151586} \frac{151586}{464}$	$\frac{A}{t_{R} [min.]} \frac{A}{[AU]} \frac{H}{[AU]} \frac{N/m}{Rs}$ $\frac{V_{V} = 50 \text{ mM disodium hydrogenphosphate:acetonitrile;1 ml/min}{3.188} 5493395 151586 464$	$\frac{A}{[AU]} = \frac{H}{[AU]} N/m Rs \qquad T = \frac{W \ 0.05}{2. \ f}$ $\frac{V_V = 50 \text{ mM disodium hydrogenphosphate:acetonitrile; 1 ml/min.; 25 °C: \pi = 280 m}{3.188 5493395 151586 464 1}$	$\frac{A}{[AU]} = \frac{H}{[AU]} N/m Rs \qquad T = \frac{W \ 0.05}{2. \ f} As = \frac{A \ 0.1}{B \ 0.1}$ $\frac{A}{V} = 50 \text{ mM disodium hydrogenphosphate:acetonitrile; 1 ml/min.; 25 °C: \pi = 280 \text{ nm}}{3.188 5493395 151586 464 1 0.92}$

Galantamin e hydrobromide	5.223	10078460	246787	1272	1.77	1	1	1.16
80:20 v/v	= 50 mM dis	sodium hydroge	enphosphate:	acetonitril	e; 0.8 ml/min.	; 25 °C; л = 280	nm	
Pymadine	4.007	7395992	198703	696		0.95	1	1.05
Galantamin e hydrobromide	8.388	8361609	281525	3892	2.8	0.94	1	1.11
80:20 v/v	r = 50 mM di	sodium hydrog	enphosphate:	acetonitri	le; 1.2 ml/min	.;25 °C; л = 280	nm	
Pymadine	3.171	4625460	129061	680		1	1	1.51
Galantamine hydrobromide	5.225	8361608	211925	1516	2.06	1	0.93	1.35
77:23 v/	v = 50 mM d	isodium hydrog	genphosphate	:acetonitri	ile; 1 ml/min.;	25 °C; л = 280 г	im	
Pymadine	3.186	4752161	132904	576		1.03	1	1.22
Galantamine hydrobromide	5.251	8533279	218996	1360	1.83	0.94	1	1.08
77:23 v/v	= 50 mM dis	sodium hydroge	enphosphate:	acetonitril	e; 1.2 ml/min.	; 25 °C; л = 280	nm	
Pymadine	3.214	8779689	248809	828		1.06	0.8	1.51
Galantamine hydrobromide	4.605	9732316	306700	1376	1.6	1	1	1.05
83:17 v/v	= 50 mM dis	sodium hydrog	enphosphate:	acetonitril	e; 0.8 ml/min.	; 25 °C; л = 280	nm	
Pymadine	3.245	2858815	80981	628		1	1	1.67
Galantamine hydrobromide	5.308	4528361	121468	1684	2.0	1	0.91	1.31
83:17 v/	v = 50 mM d	isodium hydrog	genphosphate	:acetonitri	ile; 1 ml/min.;	25 °C; л = 280 r	m	
Pymadine	3.184	5270563	148308	576		0.96	1	1.67
Galantamine hydrobromide	5.220	8457360	218200	1272	1.76	0.96	1	1.16

In changing the ratio of mobile phase components, the separation degree data were in the range of $1.76 \div 1.83$, and the symmetry factor (T) was in range of $0.94 \div 1$ (Galantamine hydrobromide), $0.96 \div 1.03$ (Pymadine). Upon varying the mobile phase velocity, T values varied between $0.94 \div 1$ (Galantamine hydrobromide) and $0.95 \div 1.06$ (Pymadine).

Conclusion

For the separation, simultaneous identification and determination of Galantamine hydrobromide and Pymadine in model mixture, isocratic HPLC was Suitable with RP (250 mm \times 4.6 mm \times 5 μ m); column temperature of 25 °C; mobile phase of 50 mM disodium hydrogenphosphate:acetonitrile = 80:20 v/v; flow rate of 1 ml/min.; and UV-detection at λ = 280 nm. The system stability was confirmed by the fact that the minor changes in the ratio of mobile phase components or in mobile phase flow rate did not decrease the degree of separation.

Conflicts of Interests

All authors had none to declare.

References

- Nikolova I., Danchev N., Lamvob N., Grudeva V. Neurodegenerative diseases in geriatry – opportunities dof currrent pharnacotherapy. Clin. Homeopathy 2010; 1(1): 3-6.
- Danchev N., Nikolova I. Pharmacological treatment of cognitive impairements in Alzheimer's disease. Autonomic Autocoid Pharmacol. 2006; 26(1): 46-49.

- Axelsen P.H., Komatsu H., Murray I.V.J. Oxidative stress and cell membranes in the pathogenesis of Alzheimer's disease. Physiol. 2011; 26(1): 54-69.
- Obreshkova D. Reactive oxygen species induced neurodegeneration in Alzheimer's disease. Pharmacia 2013; 60(1): 71-82.
- Maelicke A., Samochock M., Jostock R., Fehrenbacher A., Ludwig J., Albuquerque E.X., Zerlin M. Allosteric sensitization of nicotinic receptors by Galantamine, a new treatment strategy for Alzheimer's disease. Biol. Psychiatry 2001; 49(3): 279-288.
- Kandhan T.S., Thangavelu L., Roy A. Acetylcholinesterase activity of Ocimum sanctum leaf extract. J. Adv. Pharm. Edu. Res. 2018; 8(1): 41-44.
- Jain P., Thangavelu L, Roy A. Acetylcholinesterase activity of Cinnamon zeylanicum extract. J. Adv. Pharm. Edu. Res. 2017; 7(4): 482-448.
- Dengiz A.N., Kershaw P. The clinical efficacy and safety of Galantamine in the treatment of Alzheimer's disease. CNS Spectr. 2004; 9(5): 377-392.
- Erkinjuntti T., Kurz A., Gauthier S., Bullock R., Lilienfeld S., Damaraju C.V. Efficacy of Galantamine in probable vascular dementia and Alzheimer's disease combined with cerebrovascular disease: a randomised trial. Lancet 2002; 359(9314): 1283-1290.
- Traykova M., Traykov T., Hadjimitova V., Krikorian K., Bojadgieva N. Antioxidant properties of Galantamine hydrobromide. Z. Naturforsch. C. 2003; 58(5-6): 361-365.
- Tsvetkova D., D. Obreshkova, D. Zheleva-Dimitrova, L. Saso. Antioxidant activity of Galanthamine and some

of its derivatives. Curr. Med. Chem. 2013; 20(36): 4595-4608.

- Markov M., Danchev N., Uzunov P., Higashino H., Suzuki A. Influence of Nivalin P on the training and memorizing processes in rats. Acta Med. Kinki. Univ. 1994; 19(2); 119-1126.
- Radicheva N., Mileva K., Stoyanova N., Georgieva B. Further studies on Nivalin P-induced changes in muscle fiber membrane processes. Methods Find. Exp. Clin. Pharmacol. 1999; 21(1): 5-10.
- Espejo C., Montalban X. Dalfampridine in multiple sclerosis: from symptomatic treatment to immunomodulation. Clin. Immunol. 2012; 142(1): 84-92.
- Sah R., Arora S. Development and validation of a HPLC analytical assay method for Amlodipine besylate tablets: a potent Ca+2 channel blocker. J. Adv. Pharm. Edu. Res. 2012; 2(3): 93-100.
- Rajput S., Fanse S. RPHPLC method for simultaneous estimation of Lansoprazole and Aspirin in bulk and laboratory mixture. J. Adv. Pharm. Edu. Res. 2015; 5(2): 87-93.
- Siddartha B., Babu I.S., Gupta C.R., Panigrahy U.P. Analytical method development and validation for simultaneous estimation of Mosapride and Pantoprazole in bulk and pharmaceutical dosage form by RP-HPLC method. J. Adv. Pharm. Edu. Res. 2014; 4(2): 186-192.
- Yunoos M., Rayalla A., Raju B., Venkateswarlu G. Stability indicating RP-HPLC method for the simultaneous estimation of Olmesartan Medoxomil and Atorvastatin calcium in bulk and tablet Dosage form. J. Adv. Pharm. Edu. Res. 2014; 4(3): 372-379.
- Rao K.G., Shankar B.U., Phanindra B. Development and validation of RP HPLC method for the estimation of Cefadroxil Monohydrate in bulk and its tablet dosage form. J. Adv. Pharm. Edu. Res.2014: 4(1): 71-74.
- 20. Ingkaninan K., De Best C.M., Van Der Heijden R., Hofte A.J., Karabatak B., Irth H., Thaden U.R., Van

Der Greef J., Verpoorte R. High performance liquid chromatography with on-line coupled UV, mass spectrometric and biochemical detection for identification of acetylcholinesterase inhibitors from natural products. J. Chromatogr. A 2000; 872(1-2): 61-73.

- Deshpande G.R., Roy A.K., Rao N.S., Rao B.M., Reddy J.R. Rapid screening of volatile ion-pair reagents using UHPLC and robust analytical method development using DoE for an acetyl cholinesterase inhibitor: Galantamine hydrobromide. Chromatogr. 2011; 73(7-8): 639-648.
- Obreshkova D.P., Pangarova T., Lazarova T. HPLC determination of Galanthamine and related alkaloids in Nivalin. Compt. Rend. Acad. Bulg. Sci., 2000; 53(9): 51-53.
- Zhi C.-M., Cang Y. Determination of Galantamine hydrobromide by HPLC. J. Appl. Chem. Ind. 2007; 3(1): 927-930.
- 24. Hayes K.C., Katz M.A., Devane J.G., Hsieh J.T.C., Wolfe D.L, Potter P.J., Blight A.R. Pharmacokinetics of an immediate - release oral formulation of Fampridine (4-aminopyridine) in normal subjects and patients with spinal cord injury. J. Clin. Pharmacol. 2003; 43(4): 379-365.
- 25. Watson E. Determination of 4-aminopyridine in plasma. Anal. Biochem. 1981; 113(1): 139-143.
- Namura S., De la Parra M.G., Castañeda-Hernández G. Quantification of 4-aminopyridine in plasma by capillary electrophoresis with electrokinetic injection. J. Chromatogr. B 2010; 878(3-4): 290-294.
- International Conference on Harmonization of Technical Requirement for Registration ofPharmaceuticals for Human use, ICH harmonized tripartite Guideline, Validation of Analytical procedures Text and methodology Q2 (R1), 2005.
- Gamil A.M. Validation as applied for pharmaceutical processes. J. Adv. Pharm. Edu. Res. 2015; 5(2): 77-86.