
This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-
ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is
given and the new creations are licensed under the identical terms.

© Journal of Advanced Pharmacy Education & Research | Sep 2020 Vol 10 | Issue S1 149

A new technique to optimize dynamic load balancing problem

with distributed algorithm

Alireza Beyramizadeh1*, Mohammadreza Mollahoseini Ardakani2

1 phD Student, Faculty of Engineering, Islamic Azad University of Maybod Branch, Maybod, Iran. 2Assistant professor, computer Engineering Department. Meybod Branch,
Islamic Azad University, Meybod, Iran.

Correspondence: Alireza Beyramizadeh, phD Student, Faculty of Engineering, Islamic Azad University of Maybod Branch, Maybod, Iran. Email: alibeyrami@gmail.com

ABSTRACT

With the increasing growth of computing technology, the computers have become more efficient and compact. With the development
of powerful microcomputers, the distributed computing has been introduced as an optimal solution to gain faster computing using
existing capacities. One of the most important issues in distributed computing systems is allocating a set of tasks to a set of processors to
create the load balance and to minimize the total costs. Due to the large scale and complexities of distributed systems, centralized
allocation of tasks to specific servers is impossible. To properly manage the service providing resources, we need to acquire the load
balance to be proposed to the service provider. Components are regularly monitored and when one component is not responding, the
load balancer pops-up and prevents the traffic from being driven to that component. With proper in-situ load level analysis, problems
of resource consumption can be usually be minimized, which not only leads to lower costs and green computation, but also lowers the
pressure on particular circuits and potentially lengthens their service life. In fact, the aim of load balancing is to find a suitable mapping
of the tasks on the processors in the system.

Keywords: Optimization and processing, load balancing, distributed

Introduction

The growth and development of applications and new customers

have created new requirements such as data security, faster
processing, dynamic data accessibility, and most importantly,

cost saving.

To meet these requirements, organizations should make any
effort to find new methods to increase memory capacity and

meet the demands without the need for new hardware or hiring

new staff [1].
Cloud computing is a relatively new service which is defined as

using system resources in a completely transparent manner

without engaging the user with the infrastructure details. It is one

of the most recent developments in information technology and
is becoming more prevalent faster over time. In terms of

marketing, understanding the load balancing effects in the cloud

is very significant. Cloud computing platform is a fully automated
service platform allowing the users perform tasks such as

purchasing, e-generation, dynamic scaling, and system

management. Load balancing is currently a challenge in cloud
computing systems.

Obviously, due to the large scale and complexity of these

systems, centralized allocation of tasks to specific servers is
impossible. To properly manage the service providing resources,

we need to acquire the load balance to be proposed to the service

provider. Components are regularly monitored and when one
component is not responding, the load balancer pops-up and

prevents the traffic from being driven to that component. With
proper in-situ load level analysis, problems of resource

consumption can be usually be minimized, which not only leads

to lower costs and green computation, but also lowers the
pressure on particular circuits and potentially lengthens their

Access this article online

Website: www.japer.in E-ISSN: 2249-3379

How to cite this article: Alireza Beyramizadeh, Mohammadreza Mollahoseini
Ardakani. A new technique to optimize dynamic load balancing problem with
distributed algorithm. J Adv Pharm Edu Res 2020(S1);149-156.
Source of Support: Nil, Conflict of Interest: None declared.

file:///E:/template/105/www.japer.in

Beyramizadeh and Mollahoseini Ardakani: A new technique to optimize dynamic load balancing problem with distributed algorithm

150 Journal of Advanced Pharmacy Education & Research | Jan-Mar 2020 | Vol 10 | Issue S1

service life. In fact, the aim of load balancing is to find a suitable

mapping of the tasks on the processors in the system, in such a

way that the same amount of tasks are implemented on all
processors, so that the overall runtime is minimized [1]. In

distributed systems, where the number of requests and the scale

of the workload are high, load balancing is a critical issue.

Methodology

Literature review
The traditional virtual machines scheduling in the cloud
computing environment usually takes into account only the

current state of the system and rarely pays attention to the

previous states. This creates load imbalances in the system. The
proposed Evolutionary algorithms such as the genetic algorithm

and round-robin scheduling algorithm, used as the basic

algorithm in this environment, have not been successful in
addressing the load balancing problem.

One of the most important issues in distributed computing

systems is allocating a set of tasks to a set of processors to create
the load balance and to minimize the total costs. The task

allocation problem in the distributed computing environments to
achieve higher efficiency when using system resources as well as

the high level of load balance, refers to allocating a computer

application, including a set of interrelated and collaborating
tasks, to a set of computers or processors in a distributed system,

taking into account a set of constraints on resources (processors,

communicating channels, and so on). The marginal goal of this
allocation process is the optimization of the overall costs of the

system, including operational and communication costs. For this

purpose, an appropriate cost function is defined for the allocation
problem in distributed computing environments, and the

objective is to optimize this cost function taking into account the

constraints of the resources in the system (processors,
communicating channels).

In the present article, we are to investigate the different load

balancing methods to reduce response time in cloud computing
environments, which is one of the most important factors in

service agreement and increasing customer satisfaction.

Thereafter, the proposed algorithm is discussed. In fact, with
improving the load balance, the efficiency of cloud computing,

and thus the customer satisfaction of the service provided by the
cloud network, could be ascertained. According to the studies,

there is currently no algorithm that addresses all of aspects of on

load balancing with acceptable efficiency. The proposed
algorithm tries to enclose the parameters along with their

required effects in a highly flexible equation. Taking all aspects

intro account, this algorithm can make a significant improvement
in cloud computing.

Load balance
This reallocation of the total load to each and every node of the

collective system is performed for the efficient utilization of

resources and for improving the response time of a task, and,

simultaneously, for getting rid of a condition where some of the

machines are overloaded and some are under-loaded.

A naturally dynamic occurring load balancing algorithm cannot
take into account the previous state or behavior of the system.

So, this algorithm depends on the current state of the system.

Significant issues to be considered include load estimation, load
ratio, stability of various systems, system performance, inter-

node interactions, nature of the communicated task, node

selection, and many others [2].
This load could include the processor load, amount of storage

memory used, delay, or network load. When a given workload
is allocated to each machine in a cluster, if the available resources

are utilized in an efficient manner, this load could run also in an

efficient way. So there should be a mechanism to select the
machines that have these resources available. Scheduling is a

component or mechanism responsible for selecting a cluster

machine [3, 4]. In such cases, scheduling requires algorithms to
solve these problems.

In the real-world conditions, load balancing is mainly influenced

by three factors [5]:
1. The environment in which load balancing is one of the

requirements

2. The nature of the load itself
3. Tools available to balance the load

Goals of load balancing

• Significant improvement of efficiency

• Maintaining a backup plan even when a system component

crashes

• Maintaining the stability of the system

• Preparation for the future changes in the system.

Various types of load balancing algorithms
Depending on who initiates the load balancing process, there are
three classes of load balancing algorithms [6]:

• Sender initiated

When load balancing algorithms are initiated by the sender

• Receiver initiated

When load balancing algorithms are initiated by the receiver

• Symmetric

A combination of the above states

According to the current state of the system, load balancing
algorithms can be classified into two categories [6]:

Static: It does not depend on the current state of the system and

requires previous system data.
Dynamic: Decision for load balancing is made based on the

current state of the system and no previous data is required. So,

this is a more highly preferred technique than the static method.

• Dynamic load balancing algorithms

In dynamic load balancing algorithms, the workload is distributed

between processors at runtime. The Master processor allocates

Beyramizadeh and Mollahoseini Ardakani: A new technique to optimize dynamic load balancing problem with distributed algorithm

Journal of Advanced Pharmacy Education & Research | Jan-Mar 2020 | Vol 10 | Issue S1 151

the new process to the Slave processor on the basis of recently

collected data [7].

In a distributed system, dynamic load balancing can be performed
by two methods: distributed and undistributed.

In the distributed mode, the load balancing algorithms are

deployed by all the machines throughout the system, and the load
balancing responsibility is shared among the machines. Machine

communication for achieving the load balance can be performed

in cooperative and non-cooperative forms.

Parameters of cloud load balancing
Cloud load balancing techniques take into account various
parameters such as efficiency, response time, scalability,

throughput, resource utilization, fault tolerance, migration time

and associated overhead. However, for a load balance with
energy efficiency, the parameters should also include energy

consumption and carbon emissions.

Relevant overhead: When a load balancing algorithm is
implemented, it would determine the rate of overhead, which

involves overheads settled for task improvement, process
communication, and processing. This overhead rate should be

minimized, such that the load balancing technique works

effectively.
Throughput: It is used to calculate the tasks that have been

completed.

Efficiency: It is used to control system efficiency and should
improve reasonable costs; e.x. it should reduce response time of

the tasks and keep the delays at an acceptable level.

Resource utilization: It is used to control the resource utilization,
and should be optimized for efficient load balancing.

Resource utilization involves the automated load balancing of a

distributed system that may have an unexpected number of
processes which demand higher processing power. In case the

algorithm is able to use resources, they may be switched to

lower-loaded processors to be more efficient.
Static load balancing algorithms utilize the resources less

frequently, in such as way that the load balancing methods try to

allocate tasks to the processors to achieve the lowest response
time, and ignore the fact that this task allocation may lead to a

condition where a number of processors finish their tasks
immediately and remain idle due to lack of tasks.

Dynamic load balancing algorithms utilize the resources in a

much more optimized way, such that they follow the principle
that the load has to be distributed evenly among the processors,

in a way that no processor remains idle.

Scalability: It is the load balancing capabilities of an algorithm in
a system with a finite number of nodes. This parameter needs to

be improved.

Response time: The response time of a specific load balancing
algorithm in a distributed system. This parameter should be

minimized.

Fault tolerance: The ability of an algorithm to perform load
balancing uniformly in connection failure cases. Load balancing

should be a good fault tolerance technique.

Migration time: Time to migrate tasks or resources from one

machine to another. To increase system performance, this time

should be minimized.
Carbon emission: It calculates all resources in the system. Energy

consumption goes hand in hand with carbon emission, so, higher

energy consumption leads to higher carbon footprint. Therefore,
to obtain a solution with optimal load balancing energy, this value

should be reduced.

Proposed algorithm

Since the load balancing is one of the major challenges in cloud

computing, so it requires a dynamic local workload distribution
among all machines in an evenly manner in order to attain user

satisfaction and high resource utilization rates and to ensure a fair

and efficient allocation of computing resources. So, we
compared various load balancing algorithms in cloud computing,

and found that we could use a particular algorithm tailored to our

needs. As everyone knows, cloud computing involves a wide
range of areas. This is applicable to both large-scale and small

domains, but none of the existing algorithms meet the required
criteria. Therefore, an adaptive algorithm needs to be developed

in accordance with heterogeneous environments that could also

reduce the costs.
For this purpose, taking into account factors that affect a cloud

computing system, we design an algorithm that reduces the costs

and system errors and also increases the satisfaction rate of the
users through load balancing.

When a load is to be transmitted on a machine in the cloud

network, some major parameters should be taken into account.
In case the only objective is to appropriately distribute the

original load on the cloud, this should be taken as a special case

of load distribution on the cloud. In general, the algorithm can
be used to distribute any load on the network, particularly, the

migration of applications, codes and even the operating system.

The idea behind the algorithm is very straightforward. It
considers what parameter is the most important and allocates it

a higher decision coefficient. Cloud computing machines can be

simply informed of the conditions of some parameters on other
machines. By a simple signaling, (e.x.) the delay may be

calculated. This algorithm requires only a small amount of data
on the neighboring machines. This data is of slight volume

compared to the mass of data exchanged in this environment.

In the proposed algorithm, we mostly emphasize the data that are
locally available on the neighboring machines. There is no need

for a general picture of the entire cloud network. Cloud network

is a huge network and in case we are to gain complete
information about the network, we require lots of memory and

a large amount of data to be sent and received. Therefore, this

algorithm uses local machine data, especially neighboring
machines, and each machine sends codes or data to other

machines according to their conditions.

If a machine gets into trouble, neighboring machine will soon find
out and refer to it in their decision making. So none of the

machines require lots of scrutiny to make the decision and simply

find what it calls for.

Beyramizadeh and Mollahoseini Ardakani: A new technique to optimize dynamic load balancing problem with distributed algorithm

152 Journal of Advanced Pharmacy Education & Research | Jan-Mar 2020 | Vol 10 | Issue S1

In the proposed algorithm, we use the following equations and,

using factors effective in load balancing and appropriate standard

coefficients we would achieve the desired results. In cloud
computing, one of the factors that affect load balancing is the

number of neighboring machines. According to the cloud model,

we know that the larger the number of neighbors, the better the
load balance in the system. So, in the following equation, we add

the coefficient a to the numerator of the equation. One of the

other factors in cloud computing is the energy of each machine.
The higher the energy, the better we may use that machine for

load balancing. So, this factor took the coefficient b in the
numerator of the equation. This factor was summed up with the

above factor, i.e. the number of neighbors. Another factor to be

used is the original load of each machine, which should be as
lower as possible for load balancing. For this reason, in the

following equation, we put this factor in the denominator with

the coefficient c.
Another factor affecting the load balance is the time of response

of each machine to the request. We can calculate the elapsed time

through sending data to the respective machine and receiving the
corresponding data. This could be done for all machines in the

cloud system and their neighboring machines. The machine with

the minimum time could be used for load balancing. Therefore,
we put this factor in the denominator with the coefficient d to

help us achieve a better load balance in the cloud computing.

The proposed equation is as follows: 𝑛𝑛∗𝑎+𝑒𝑛∗𝑏∗𝑥1𝑙𝑑∗𝑐∗𝑥2+𝑟𝑡∗𝑑∗𝑥3 (1)

𝑎 + 𝑏 + 𝑐 + 𝑑 = 1 (2)

where, nn is the number of neighbors, en in the energy level, 𝑙𝑑

is the load of each machine and 𝑟𝑡 is the response time of each

machine in the network.

Also, 𝑎, 𝑏, 𝑐 and 𝑑 are the impact factors of each parameter,

which is a number above than zero and below 1, and, as obvious,

their total sum must equal 1. 𝑥1, 𝑥2 and 𝑥3 are parameters to be used to balance the ratio

between the parameters in the equation. Here, the number of

neighbors is taken as the base parameter and other parameters
are compared to it. That is, these parameters are used to

assimilate various parameters in the equation, and their values are

determined according to the expected values of the parameters.
This algorithm has high flexibility and more criteria could also be

added to it. In different environments and under various
conditions, expectations from the cloud computing may vary.

Therefore, these parameters can be applied with slight changes

or new parameters could be added. So, the impact factors of
various parameters should firstly be determined. However, the

parameters should be approximated to determine the exact value

of the assimilation parameters.
The proposed equation is as follows:

nn∗a+en∗b∗x1ld∗c∗x2+rt∗d∗x3 (3)

where, nn is the number of neighbors of each server, en in the

energy level of the server, 𝑙𝑑 is the load of each server and 𝑟𝑡 is

the response time of each server. 𝑎, 𝑏, 𝑐 and 𝑑 are the impact

factors of the parameters and 𝑥1, 𝑥2 and 𝑥3 are the load

balancing parameters.

For a numerical example, let the impact factors of the parameters
are as follows: 𝑎 = 0. 15 𝑏 = 0. 30 𝑐 = 0. 35 𝑑 = 0. 20

Also to consider the balancing parameters, the range of
parameters should be determined in the equation. For example,

by default, a cloud server has about 10 to 50 neighboring

servers, or the daily amount of energy it may consume in the

cloud environment is 20 to 100 joules; also, the server load can

be based, for example, on the number of virtual machines
running on the server or the occupied memory level of these

virtual machines on the server. Each of these factors gives

different values. In addition, the multiplicative combination of
these two concepts can be used. If we include the number of

virtual machines in the equation, it would range from 1 to 1000 (for large servers). Although the number of virtual

machines could also be 0, at least 1 virtual machine per server is

assumed to take into account the minimum impact.

The servers are assumed to be similar in terms of memory size
and capacity to accept virtual machines; otherwise, this

difference should also be included. The estimated response time

of each server can be, for example, between 1𝑚𝑠 to 10𝑠. These

are hypotheses of the problem and there may be differences in
the real world.

At first the parameters are rewritten with small conversions: 𝑛𝑛 = 10 − 50 𝑒𝑛 = 20 − 100 𝐽 𝑙𝑑 = 1 − 1000 𝑣𝑚 𝑟𝑡 = 1 − 10000 𝑚𝑠

Now, the suitable values for load balancing parameters could be

as follows: 𝑥1 = 2 𝑥2 = 1/10 − 20 𝑥3 = 1/10 − 200

if we assume that the values could be uniformly distributed in the
desired intervals, the average of each interval can replace that

load balancing parameter: therefore 𝑥2 takes the value 10

and 𝑥3 takes the value 100.

Now the equation is as follows:

nn∗0.15+en∗0.30∗2ld∗0.35∗10+rt∗0.2∗100 (4)

Beyramizadeh and Mollahoseini Ardakani: A new technique to optimize dynamic load balancing problem with distributed algorithm

Journal of Advanced Pharmacy Education & Research | Jan-Mar 2020 | Vol 10 | Issue S1 153

Now, we can analyze which two servers are more suitable for

migration of a virtual machine. (For example, for one server, 𝑛𝑛, 𝑒𝑛, 𝑙𝑑 and 𝑟𝑡 are assumed to be 20, 25, 900, and 2200,

respectively, and for the other, they are 35, 15, 30 and 350,

respectively).
The proposed method actually works when a decision is made to

make a virtual machine migrate to a physical machine. So, it is

somehow different with the mechanisms discussed above.
However, most previous methods discuss the virtual machine

and their requests. For example, the Active Monitoring Load

Balancer or Throttled Load Balancer techniques take into account
a mechanism to decide which requests should be assigned to

which virtual machines. These methods can also be used along

with the proposed method to further improve load balancing in
cloud environments.

To better understand the proposed algorithm, it I defined in
some general steps:

First, it is assumed we have several physical machines that can

vary in terms of hardware resources. There are no virtual
machines in the system and no user processes are running on the

systems.

Then, the first request arrives and a virtual machine should be
created on a physical machine or server. This virtual machine is

created taking into account the power and resources of the

physical machine as well as the processes it needs to implement
and the SLA required by the process. That which physical

machine takes the responsibility for the process is determined

based on the above equations. This could be done in a different
way, because usually there is little data on the cloud environment

in a distributed manner in the physical machines and there is a

need for a coordinator in which physical machine data are based.
In terms of the subsequent requests, there will be three modes:

They may be running on a pre-existing virtual machine; a new

virtual machine may be created on an idle server; or a new virtual
machine may be created on an occupied server. The third case

usually doesn't happen, but in order to balance the load in the
cloud environment, if the physical machine is still idling, a new

virtual machine is better to be created on it to implement the

process. In this decision, the SLA of the requests should also be
taken into account. At this stage, the previously mentioned

methods such as Active Monitoring Load Balancer can be used.

If a physical machine is in trouble or if it is forced to make the
processes migrate for any reason, such as the high load and low

resources required running the processes, the physical machine

should specify the destination for each VM. At this point, the
proposed equation is used and the destination physical machine is

selected for each VM. The proposed design will be running until

there is any process on the network for processing.

Discussion and Conclusion

Load balancing on the network leads to a loss of quality and,

finally, the loss of user requests. When the load balancing is

invoked, some phases may be observed. Depending on the
different parts of the network, a special case may be related to

the virtual machine migration on the server to gain the data.

In the present paper, the system in question is an IaaS

environment represented as a data center containing 𝑁

heterogeneous physical nodes. Each node 𝐼 contains three

features: processor use known as MIPS; memory use and

bandwidth. Servers do not include local disks and the memory is

provided through a NAS to allow live migration. Several
independent users make their requests for using 𝑀 heterogeneous virtual machines that have three

characteristics: processing power (MIPS), memory capacity, and

network bandwidth. Every user signs an SLA contract with the
service provider; and in case of violation of SLA, the service

provider is required to pay a penalty.

Figure 1. The model system used in this algorithm

(users-general manager, local manager, local manager, host
No.1, host No.N)

The software layer is divided into two sections of local manager
and general manager. The general manager is located on the VM

in each host. The tasks of these managers include constant

monitoring the efficiency of the host CPU, resizing the virtual
machines according to the requirements, and deciding on which

virtual machines to migrate. The general manager is located on

the main node and collects the required information from all
local managers. The general manager orders the required

instructions to optimize the location of virtual machines. VM is

assigned to processes of resizing, migrating virtual machines and
power variation.

Table 1. Specifications of the servers used

RAM (GB) Frequency (MHz) Cores CPU Model Server

4 1860 2 Intel Xeon 3040 HP ProLiant G4

Beyramizadeh and Mollahoseini Ardakani: A new technique to optimize dynamic load balancing problem with distributed algorithm

154 Journal of Advanced Pharmacy Education & Research | Jan-Mar 2020 | Vol 10 | Issue S1

4 2660 2 Intel Xeon 3075 HP ProLiant G5

8 2933 4 Intel Xeon 3470 IBM Server x3250

16 3067 2*6 Intel Xeon 5675×2 IBM Server x3550

Table 2. Power consumption of servers in different modes

Full %90 %80 %70 %60 %50 %40 %30 %20 %10 Idle Server

117 114 112 108 106 102 5.99 96 6.92 4.89 86 HP ProLiant G4

135 133 129 125 121 116 110 105 101 97 7.93 HP ProLiant G5

113 105 6.99 5.89 7.80 73 4.65 9.57 3.52 7.46 6.41 IBM Server x3250

222 205 189 170 153 140 128 118 109 98 4.58 IBM Server x3550

Here we make use of four servers: HP Proliant ML 110 G4, HP
Proliant ML 110G5, IBM SERVER and IBM SERVER x3550.

The configuration and specifications of these servers are provided

in Table 1 and their power status in Table 2.

Calculation of costs of live migration and

volume of migrated data
Live migration allows virtual machines to be migrated from one

host to another without interruption and with the shortest

downtime. Anyway, live migration has a negative effect on the
performance of running programs. Scientiscts have made an

empirical study on this effect and provided a model. They

concluded that performance degradation and downtime depend
on the behavior of the application (like: how many memory pages

are updates by the program at runtime). Anyway, for the

applications with variable workloads, such as web applications,

average performance degradation can be estimated as about 10%

of the processor efficiency.

Live migration increases the violation of the 𝑆𝐿𝐴. Therefore, the

number of migrations needs to be as low as possible. The

duration of a live migration depends on the amount of memory
occupied by the virtual machine and the available bandwidth. Eq.

5 is used to estimate the duration of migration and performance

degradation of the virtual machine 𝑗:

0

0

0.1 ()

j

m j

j

j

m

j

t T

d j
t

M
T

B

U u t dt
+

=

= 
 (5)

Where,
jdU denotes the performance degradation due to

virtual machine 𝑗. 0
t indicates the migration start time and

jmT

the is the time of migration. ()
j

u t shows the processor

productivity,
j

M is the amount of memory used by the virtual

machine 𝐽, and
j

B is the available bandwidth.

Eq. 6 is used to calculate the total amount of data migrated:

1

I

m i

i

D M
=

= (6)

Where, mD is the total amount of data transmitted during

migration; 𝐼 is the total number of migrations and iM is the

amount of memory migrated.

SLA violation metrics
Quality of service is of high importance in cloud computing
environments.

Quality of service is often characterized in the framework of 𝑆𝐿𝐴, which is determined by criteria such as minimum efficiency

or maximum response time of the system. Since these properties
vary depending on the type of application, it is necessary to

introduce a metric that is independent of the workload. So, in

the present paper, the following method is used to estimate the 𝑆𝐿𝐴 violation. Two metrics have been proposed for this

purpose:

The time during which the active host has experienced a 100%

efficiency of the processor.

1

1
i

i

N
s

i a

T
SLATAH

N T=

=  (7)

Where, 𝑁 is the number of hosts,
is

T is the time during which

the ith host has experienced a 100% efficiency of the processor,

and
ia

T is the time during which the ith host has been active.

It has been shown that when the host reaches 100% efficiency,

the performance of the applications is limited to the host
capacity. Therefore, the desired level of performance may not be

provided for the virtual machines.

Total performance degradation due to the migrations (𝑃𝐷𝑀)

1

1 j

j

M
d

j r

C
PDM

M C=

=  (8)

Beyramizadeh and Mollahoseini Ardakani: A new technique to optimize dynamic load balancing problem with distributed algorithm

Journal of Advanced Pharmacy Education & Research | Jan-Mar 2020 | Vol 10 | Issue S1 155

Where,
jdC is the performance degradation due to the

migrations of jth virtual machine,
jrC is the total capacity of the

processor that the virtual machine has requested during its

lifetime, and 𝑀 is the number of virtual machines.

Eq. 9 shows the 𝑆𝐿𝐴 violation rate

.SLAV SLATAH PDM= (9)

Conclusion

Cloud service providers deal with a trade-off between power and

efficiency (improving fair communication vs. 𝑆𝐿𝐴𝑉 reduction).

To maximize the profit, service providers require energy

efficient methods to consolidate the virtual machines and putting

the idle servers to the sleep mode in order to improve the fair
communication. Anyway, this consolidation may increase the

violation rate of 𝑆𝐿𝐴, which has been signed between the service

provider and the user at the beginning.

In the present article, a new method was provided to find new
under-loaded hosts for the virtual machines. The proposed

algorithms were evaluated by simulating a large-scale data

center, using with data from thousands of PlanetLab virtual
machines.

Figure 2. Simulation diagrams

The results show that the proposed method is better than other

dynamic virtual machines consolidation algorithms in terms of

average 𝑆𝐿𝐴 violation as well as reduced amount of data

migrated.

The results of the simulation are significant in two respects:

The number of virtual machines present in a host is an important
factor to determine whether or not the host in under-loaded.

That’s because, it is highly likely that the productivity of the host

increases with a higher number of virtual machines due to its
increased efficiency.

The behavioral history of the virtual machines is an important

factor. Using this history will improve the fair communication

and 𝑆𝐿𝐴 violation.

The energy consumption is reduced because in this method, the

peak energy consumption of the virtual machines will not occur

simultaneously. 𝑆𝐿𝐴 violation is reduced because the number of conditions

where hosts reach their peaks (100% efficiency) will be reduced.

References

1. Hamo A, Saeed A. Towards a Reference Model for
Surveying a Load Balancing. IJCSNS International Journal

of Computer Science and Network Security. 2013

Feb;13(2):42-7.
2. Calheiros RN, Ranjan R, Beloglazov A, De Rose CA,

Buyya R. CloudSim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of

resource provisioning algorithms. Software: Practice and

experience. 2011 Jan;41(1):23-50.
3. Raghava NS, Singh D. Comparative study on load

balancing techniques in cloud computing. Open journal of

mobile computing and cloud computing. 2014 Aug;1(1).
4. Sethi S, Sahu A, Jena SK. Efficient load balancing in cloud

computing using fuzzy logic. IOSR Journal of Engineering.

2012 Jul;2(7):65-71.

Beyramizadeh and Mollahoseini Ardakani: A new technique to optimize dynamic load balancing problem with distributed algorithm

156 Journal of Advanced Pharmacy Education & Research | Jan-Mar 2020 | Vol 10 | Issue S1

5. Walker BJ, Steel D. Implementing a Full Single System

Image UnixWare Cluster: Middleware vs Underware.

InPDPTA 1999 Jun (pp. 2767-2773).
6. Alakeel AM. A guide to dynamic load balancing in

distributed computer systems. International Journal of

Computer Science and Information Security. 2010
Jun;10(6):153-60.

7. Kokilavani T, Amalarethinam DG. Load balanced min-min

algorithm for static meta-task scheduling in grid
computing. International Journal of Computer

Applications. 2011 Apr;20(2):43-9.

