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ABSTRACT 

In this study, the folp gene encoding DHPS was tested as a possible alternative phylogenetic marker for more closely related Gram-
negative bacterial species. In this new method, 854 bp were implemented for classification instead of 1435 mostly used in 16S gene 
detection. Phylogenetic analysis was performed based on DNA sequences obtained from the GenBank including the most important 
Gram-negative bacterial species. The 16S rRNA-based tree openly portrayed three distinct clusters where cluster 1 is a mixed species 
cluster including E.coli, Shigella sp., Proteus sp., Enterobacter sp. Citrobacter sp., Salmonella sp., Serratia sp., and Klebsiella sp., while clusters 
2 and 3 contained P. aeruginosa and Haemophilus sp. respectively. Comparatively, the folp gene-based tree yielded 9 clusters in which, 
E.coli and Shigella sp. were identified in one mixed cluster. However, other Gram-negative species such as Klebsiella sp., Enterobacter sp., 
Salmonella sp., Citrobacter sp., Serratia sp., Proteus sp., Haemophilus sp., and P. aeruginosa were found each in a separate cluster. In 
addition, DNA-DNA relatedness studies indicated high sequence divergence of folp gene exhibiting 47.54-98.37% interspecies 
homology compared to 16S rRNA with sequence similarities of 79.58-98.11%. In addition, 71.9-100 % intraspecific similarities were 
obtained for the folp gene which indicates the possibility for use of the folp gene as a possible efficient target for Gram-negative bacterial 
group taxonomic analysis. Moreover, in blind tests, this method was able for the correct identification of 10 Gram-negative bacteria 

isolates. In conclusion, folp gene sequences provide better analysis of Gram-negative bacteria. 
 

Keywords: Gram-negative, folp gene, Microbial classification, DNA-DNA relatedness, 16S rRNA gene 

 

Introduction   

For studies of the bacterial genus in both the epidemiological 

and taxonomic fields, different old methods for bacterial 

identification and classification are mainly based on their 

metabolic activities, in addition to the morphologic appearance 

of the cells [1]. Activities of enzymes, carbohydrate 

fermentation, and reduction of chemical compounds are some 

examples used for phenotypic profiling of different bacterial 

species. In this respect, for rapid bacterial identification, 

commercial biochemical test kits including chemicals to test a 

complete set of enzyme activities can also be used [2].  Phage 

typing and serology are other traditional methods that have 

exhibited their success in bacterial classification even to their 

serotypes. However, these techniques can only be applied to 

detect cultivable bacterial pathogens. In recent years, molecular 

techniques have been developed to identify and classify 

microbes based on their genetic relatedness [3]. Sequence-based 

techniques could be implemented for bacterial classification 

even to the species level. The most used approach is based on 

PCR amplification fragments of different housekeeping genes, 

followed by sequencing. The term housekeeping genes is 

usually used to describe genes that code for proteins that carry 

out different functions for essential cellular processes.16S 

rRNA gene, with its species-specific variable regions, usually 

represents the ideal gene for designing species-specific primer 

[4]. In addition, a useful tool for identifying bacteria that can be 

suggested is the RNA polymerase β subunit gene (rpoB) [5]. 
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Moreover, the gyrase B subunit (gyrB) has been succeeded in the 

identification of bacteria to the species level. Such importance 

has emerged for selecting appropriate treatment of pathogenic 

microbes in Hospitals and clinical facilities [6]. Methodologies 

for practical use implements universal primers for most bacteria 

that can be designed to amplify the same gene by PCR across 

diverse genera and species. The next steps include sequencing 

and sequence alignment. The degree of similarity and species 

detection is usually calculated when DNA sequences were 

contrasted with a reference databank sequence and an identity 

score is usually given after each query process. The 

investigatigation of the possibility to use folp gene for both 

interspecies and interspecies DNA analysis of Gram-negative 

bacteria is the purpose of the study [7]. 

Materials and Methods 

Processing of specimens 

10 different bacterial isolates were obtained from different 

clinical sources were separated on growth media, aerobic 

incubation at 37°C follows with daily observation for 24 hr. 

Isolates were obtained from our culture collection and were 

identified by standard phenotypic microbiological techniques. 

Processing and genomic DNA extraction 

As per instructions of the manufacturer, the Genomic DNAs 

were extracted from different samples isolated from different 

sources using the QIAmp DNA Mini Kit (QIAGEN, Hilden, 

Germany). Nanodrop (OPTIZEN NanoQ, Mecasys) was used 

to determine the gDNA intensity. Purified DNAs were frozen 

at −80◦C.  

Design and synthesis of oligonucleotide 

probes 

A region of 854 bp targeted in this study was implemented for 

the identification of bacteria based on their folp gene sequence. 

Specified targets with particular primer sequences and lengths 

were selected, GC content, and thawing temperatures in order 

to be used in a single reaction at a specific temperature. The 

final probe sequences for species-specific oligos were compared 

Contrasting of all available sequences in the GenBank database 

(http://www.ncbi.nlm.nih.gov/BLAST/) with the final probe 

sequences for the species-specific oligos was done to exclude 

any theoretical false-positive reactions caused by sequence 

variations and to indicate the probes that have a higher 

threshold sequence similarity than the required one.  

PCR amplification of strain-specific genes 

Table 1 lists the performed priming done for the amplification 

of genomic DNA. The reaction mixture was prepared to start 

from gDNA as a template, in a reaction mixture containing 0.5 

μM of each primer, 1.5 mM MgCl2, 0.2 mM dNTPs, 1 U Taq 

polymerase (Thermo scientific Dream Taq Green DNA 

polymerase), 2 μl of template DNA and nuclease-free water 

was added for a total volume of 25 μl per reaction. The PCR 

was performed using Cycler 003 PCR Machine (A & E Lab 

(UK)). PCR reactions began with 5 minutes of initial 

denaturation at 94°C followed by 35 cycles of 94°C for 30 s, 52 

for 30 s and 72°C for 30 s and a final one at 72˚C for 10 min. 

 

Table 1. Oligonucleotides used in this study 

Primer 

name 

Organism 

targeted 
Primer Sequence Citation 

fol- F1 Salmonella sp. ATGAAACTCTTCGCTCAGGG This study 

fol- F2 E.coli, Shigella sp. ATGAAACTCTTTGCCCAGGG This study 

fol- F3 Klebsiella sp. ATGAAACTTGTAGCCCAGGG This study 

fol- F4 Enterobacter sp. ATGAAACTATTCGCCCAGGA This study 

fol- R1 
E.coli, Shigella sp., 

Enterobacter sp. 
TTACTCATAGCGTTTGTTTTCC This study 

fol- R2 Salmonella sp. TTACTCATAGCGTTTGTTTCCC This study 

fol- R3 Klebsiella sp. TTACTCATAACGTTTTTTT This study 

DNA sequencing 

Purification of the Amplified folp gene fragments was done 

using the Gene JET PCR Purification Kit (K0691, Thermo 

Scientific, Waltham, MA USA). ABI PRISM® BigDye 

Terminator Cycle Sequencing Ready Reaction Kit (Applied Bio-

systems, Foster City, USA) was used for sequencing reactions. 

Sequencing was carried out on both strands using an ABI 3730 

DNA analyzer (Applied Bio-systems, Foster City, USA). 

Sequences analysis was performed online in BLAST search 

(http://www.ncbi.nlm.nih.gov/BLAST/).  

GenBank was used to store the sequences for the study in its 

depository under the following accession numbers: MT281366- 

MT281374 

Comparative DNA sequence data 

The nucleotide sequences of 16S rRNA and folp genes were 

aligned by the CLUSTAL W computer program [8]. Maximum 

Parsimony analysis [9] was used to reconstruct phylogenetic 

trees. Molecular Evolutionary Genetics Analysis package 

version 4.1 MEGA 4.1 software 

(http://www.megasoftware.net) was used to analyze the 

aligned sequences. The Maximum Parsimony method was 

employed as an evolutionary history inference [10]. The 

replicate trees percentage in which the associated taxa clustered 

together in the bootstrap test (1000 replicates) [11]. 

Results and Discussion 

In previous studies, the conventional typing systems based on 

phage-typing, serotyping, and anti-biogram as phenotypes to 

name but a few, have been used for many years. In many cases, 

however, strain similarity or lack thereof is not enough but 

http://www.ncbi.nlm.nih.gov/BLAST/
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rather the necessity is in the understanding of the relation of the 

isolates [12]. A frequent method for organism classification is 

Phylogenetic tree analysis [13]. In modern bacteria taxonomy, 

the standard method for the investigation of phylogenetic 

relationships is the 16S rRNA sequence analysis [14-18]. In 

bacterial identification, two types of a region in 16S rRNA gene 

DNA sequences are mainly implemented including the variable 

regions mainly used to differentiate genera and species, while 

the highly conserved regions are used for relationships 

definition among distant taxa [19, 20]. As previously 

documented, taxonomic problems usually emerge in members 

of the family Enterobacteriaceae when the 16S rRNA gene is 

used as a species identification marker. In addition, 

phylogenetic analysis cannot be easily resolved which is mainly 

attributed to the conservation’s higher degree in closely related 

species [21]. Moreover, the recently identified marker gyrB 

provides an effective and fast method for bacterial species 

identification and phylogenetic relationships examination [22]. 

In addition, as previously documented, in the gyrB sequence 

comparison, compared to the 16S rDNA sequence analysis, the 

phylogenetic relationships at the species level are more defined, 

while 16S rRNA gene sequence has a higher effect in the 

analysis of higher orders and genera. Moreover, partial rpoB 

gene analysis and sequencing were executed to give more 

sensitivity [5].  However, more gene markers are required with 

increased specificity for more resolved phylogentic analysis. The 

phylogenetic trees were constructed in this study from 16S 

rRNA and folp Gram-negative bacterial species gene sequences 

as shown in Figure 1. The 16S rRNA-based tree openly 

delineated four distinct clusters with high bootstrap values 

(1000) at distance adjusted to100. Cluster 1 is a mixed species 

cluster in which E.coli,  Shigella sp., Klebsiella sp., Enterobacter 

sp., Salmonella sp., Citrobacter sp., Serratia sp. and Proteus sp., 

while cluster 2 and cluster 3 contained P. aeruginosa and 

Haemophilus sp. respectively (Figure 1). Comparatively, the 

folp gene-based tree yielded 9 clusters with a bootstrap value at 

distance adjusted to 100 and 1000 bootstrap value. E.coli and 

Shigella sp. were identified in one mixed cluster. However, 

other Gram-negative species such as Klebsiella sp., Enterobacter 

sp., Salmonella sp., Citrobacter sp., Serratia sp., Proteus sp., 

Haemophilus sp. and P. aeruginosa were found in separate 

clusters. In addition, at distance adjusted to 50 and 1000 

bootstrap value, more resolution could be obtained even to the 

species level of Gram-negative bacteria.  
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b) 

Figure 1. Phylogenetic trees of Gram-negative bacteria based on 16S rRNA (a) and folp gene sequences (b). The evolutionary 

history was inferred using the Maximum Parsimony method. The percentage of replicate trees in which the associated taxa clustered 

together in the bootstrap test (1000 replicates). 

These figures were obtained directly from the phylogenetic tree constructing program with the best possible resolution of MEGA 4 

program. 
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Comparative DNA sequence data 

At the interspecies level, DNA–DNA relatedness analyses were 

used for comparison of folp gene sequence similarities. As a 

result, Gram-negative species were detected in the range 

between 47.54- 98.37%. However, 16S rRNA gene sequence 

identical strains similarities were limited to 79.58-98.11%.  In 

addition, comparative sequence analysis indicated a higher folp 

gene substitution compared to the 16S rRNA gene substitution. 

Interestingly, the folp gene sequence showed more remarkable 

discrimination abilities (47.54- 98.37%), which are more 

discriminatory than the 16S rRNA gene for species 

differentiation with exception of E.coli and Shigella sp. which 

were the most similar pair with 1.87 % sequence divergence.  

At the intraspecies level, high nucleotide substitution in Proteus 

sp. 22.95 %, Serratia sp. 27.05%, and Citrobacter sp. 28.10% 

could be detected. However 9 % or lower values could be 

detected in other Gram-negative bacteria (Table 2). In 

contrast, in 16S rRNA gene results, at the interspecies level, 

the nucleotide substitution rates were ranged below 4 % 

exclusive of Haemophilus sp. which was 6.55 % (Table 3). The 

folp gene DNA–DNA relatedness was consistent with the 

sequence-based phylogenetic analysis and a linear correlation 

was observed (Figure 1). For example, Shigella sp. and E.coli 

which were more closely related detected in the phylogenetic 

analysis were detected with a divergence of 1.87 %.  In 

addition, in folp gene phylogenetic analysis, E.coli which is 

highly distant from Haemophilus sp., Serratia sp., Proteus sp., and 

P. aeruginosa exhibiting high 44.61, 40.39, 39.81, and 42.62 % 

DNA–DNA folp gene sequence divergence respectively. 
 

Table 2. % DNA-DNA sequence divergence between different Gram-negative bacteria based on  folp  gene sequences 

 Proteus sp. Citrobacter sp. E.coli Shigella sp. Salmonella sp. Enterobacter sp. Klebsiella sp. Serratia sp. Hemophilus sp. P. aeruginosa 

Proteus sp. 22.95 44.61 39.81 39.70 41.80 40.52 40.16 46.49 46.60 52.46 

Citrobacter sp 44.61 28.10 30.21 29.98 32.08 32,90 33.14 43.68 51.52 51.29 

E.coli 39.81 30.21 1.17 1.87 21.19 20.37 22.13 40.39 44.61 42.62 

Shigella sp. 39.70 29.98 1.87 1.41 20.84 20.37 22.13 40.28 44.61 42.74 

Salmonella sp. 41.80 32.08 21.19 20.84 8.55 24.82 23.65 40.75 47.31 43.68 

Enterobacter sp. 40.52 32,90 20.37 20.37 24.82 00 20.96 38.99 45.32 41.1 

Klebsiella sp. 40.16 33.14 22.13 22.13 23.65 20.96 00 38.52 45.08 40.28 

Serratia sp. 46.49 43.68 40.39 40.28 40.75 38.99 38.52 27.05 51.41 49.29 

Hemophilus sp 46.60 51.52 44.61 44.61 47.31 45.32 45.08 51.41 8.43 48.71 

P. aeruginosa 52.46 51.29 42.62 42.74 43.68 41.1 40.28 49.29 48.71 0.35 

 

 

Table 3. % DNA-DNA sequence divergence between different Gram-negative bacteria based on 16S rRNA gene sequences 

 Proteus sp. Citrobacter sp E.coli Shigella sp. Salmonella sp Enterobacter sp Klebsiella sp. Serratia sp. Hemophilus sp P. aeruginosa 

Proteus sp. 1.12 9.14 8.16 8.51 9.55 8.65 9.14 7.53 15.61 17.29 

Citrobacter sp 9.14 3.71 5.04 5.32 5.53 4.62 5.39 5.37 15.19 17.50 

E.coli 8.16 5.04 0.35 1.89 4.69 4.97 5.88 4.60 14.15 15.76 

Shigella sp. 8.51 5.32 1.89 1.61 5.39 5.46 6.3 5.16 14.63 16.18 

Salmonella sp. 9.55 5.53 4.69 5.39 3.43 5.53 6.44 6.62 15.54 16.67 

Enterobacter sp. 8.65 4.62 4.97 5.46 5.53 2.1 4.2 3.97 15.05 16.31 

Klebsiella sp. 9.14 5.39 5.88 6.3 6.44 4.2 3.43 4.81 15.26 16.74 

Serratia sp. 7.53 5.37 4.60 5.16 6.62 3.97 4.81 0.42 14.01 15.83 

Hemophilus sp 15.61 15.19 14.15 14.63 15.54 15.05 15.26 14.01 6.55 20.42 

P. aeruginosa 17.29 17.50 15.76 16.18 16.67 16.31 16.74 15.83 20.42 1.46 

 

Blind identification of some Gram-negative 

species 

According to the newly utilized genotypic method used, the 9 

isolated strains were identified as follows: 2 Enterobacter sp., 2 

Salmonella sp., 2 K.pneumonia, 1 Shigella sp., and 2 E.coli. The 

distribution of different Gram-negative species in respect to the 

type of sepsis was illustrated in Figure 2. 
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Figure 2. Blind identification of some Gram-negative species by phylogenetic analysis of folp gene sequences obtained in this study in 

addition to other gene sequences downloaded from the GenBank. All strains of this study were identified based on the closely related 

to reference strains installed from the GenBank 

 

Conclusion  

Gram-negative species are closely related and require more 

effort to be differentiated from each other. For this reason, 

other DNA sequencing genes are required. In this study, the 

folp gene encoding DHPS provided better resolution compared 

to the 16S rRNA gene sequences for both interspecies and 

interspecies 47.54- 98.37% and 79.58-98.11% respectively. 

These results indicate the possibility for implementation of the 

folp gene in DNA analysis of Gram-negative bacteria. 
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