

Original Article

Antioxidant potential of underutilized parts of salam (*Syzygium polyanthum*) using DPPH and CUPRAC methods

Atina Rizkiya Choirunnisa^{1*}, Siti Salma Azzahra¹, Hegar Pramasty¹, Defri Rizaldy¹, Rika Hartati¹, Ilda Fidrianny¹

¹Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Jl. Ganesa 10 Bandung, West Java 40132, Indonesia.

Correspondence: Atina Rizkiya Choirunnisa, Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Jl. Ganesa 10 Bandung, West Java 40132, Indonesia. atinar@itb.ac.id

Received: 29 September 2025; **Revised:** 06 December 2025; **Accepted:** 11 December 2025

ABSTRACT

Antioxidants can combat free radicals that can cause degenerative diseases. Natural antioxidant agents can be found in salam (*Syzygium polyanthum*). Thus, the purpose of this study is to assess the salam's underutilized roots and twigs as a natural antioxidant source. The study also aims to identify and determine the flavonoid compound levels in the selected extract. Salam's antioxidant properties were demonstrated by the detection of flavonoids and phenolic substances by phytochemical screening. Using UV-visible spectrophotometry, the amounts of antioxidant activity, total flavonoid, and total phenolic were determined. The cupric ion-reducing antioxidant capacity (CUPRAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) techniques were used to measure antioxidant activity. Using high-performance liquid chromatography, the flavonoid components of the chosen extract were identified and quantified. The most antioxidant activity using DPPH was found in the ethanol of salam root extract, which included rutin, apigenin, and apigenin-7-O-glucoside molecules. It is possible to develop salam roots as a novel potential antioxidant agent source.

Keywords: Antioxidant, Flavonoid, Phenolics, *S. polyanthum*, Unused parts

Introduction

Unpaired electrons are found in compounds known as free radicals. These molecules are mostly chemically reactive and unstable because they always try to obtain electrons from other molecules [1]. Oxidative stress, which is a major factor in degenerative processes including aging, cancer, arteriosclerosis, ischemic/reperfusion phenomena, and inflammatory illnesses, can be brought on by free radicals [2-4]. By giving free radicals electrons, antioxidants are chemicals that may neutralize them

and bring them down to a stable state [5]. With the presence of antioxidants, oxidative stress that can cause degenerative disease can be inhibited [6, 7].

The biggest chemicals with antioxidant properties found in plants are flavonoids and phenolic compounds [8]. Flavonoid and phenolic compounds are abundantly found in salam (*S. polyanthum*). There is another scientific name for Salam. It has been demonstrated that the plant *Eugenia polyantha* possesses anti-inflammatory, anti-hypertensive, anti-ulcer, anti-diabetic, and anti-diarrheal properties [9]. Salam is an evergreen plant or a plant that will continue to grow throughout the year or season, and widely distributed in Southeast Asia, including Malaysia, Thailand, Singapore, and Indonesia [10]. Salam leaves also have the potential to be used as a natural preservative because salam leaves contains phenols, tannins, flavonoids, and hydroquinone, which are antioxidant and antimicrobial agents [11]. The present research proposes to investigate the unused parts (roots and twigs) of salam as source of natural antioxidant. The study also

Access this article online

Website: www.japer.in

E-ISSN: 2249-3379

How to cite this article: Choirunnisa AR, Azzahra SS, Pramasty H, Rizaldy D, Hartati R, Fidrianny I. Antioxidant potential of underutilized parts of salam (*Syzygium polyanthum*) using DPPH and CUPRAC methods. J Adv Pharm Educ Res. 2026;16(1):14-22. <https://doi.org/10.51847/XUWb1mx55F>

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

aims to identify and determine the flavonoid compound levels in the selected extract.

Materials and Methods

Chemicals

Sodium carbonate, n-hexane, ethyl acetate, ethanol, distilled water, gallic acid, aluminum chloride, cupric chloride, neocuproine, ammonium acetate, ascorbic acid, DPPH, methanol, rutin, kaempferol, apigenin, and apigenin-7-O-glucoside. The instruments included a UV-visible spectrophotometer (Thermo Fisher Scientific, Inc.; Trace 1300), UV light (Camag), high-performance liquid chromatography (HPLC) equipment (Shimadzu Corporation), an oven, a water bath, a rotary evaporator, and a grinder.

Sample collection

The collection and preparation of materials consisted of several stages, including material collection, plant determination, drying, and grinding materials into crude drug powder [12-15]. Five kilograms of each organ part—leaves, roots, and twigs—were gathered from Ciwidey in Bandung City, West Java. Materials were cleaned by washing them with water and letting them dry after plants were identified at the Bandungense Herbarium, Biology Study Program, School of Life Sciences and Technology, Bandung Institute of Technology. Once dried, the materials were chopped and dried using an oven. The dried leaves, roots, and twigs of salam were then ground into coarse powder by a grinder. The powder was stored in a sealed container under dry conditions.

Extract preparation

Ethanol, n-hexane, and ethyl acetate were used as solvents in the reflux approach to extract around 300 grams of *S. polyanthum* leaves, roots, and twigs. Three extractions were performed on each solvent; each cycle lasted two hours. Following that, a rotary evaporator was used to evaporate the solvent.

Total phenolic content (TPC)

As a standard, gallic acid was used to determine the total phenolic content. To create solutions with concentrations ranging from 60 to 130 μ g/mL, gallic acid was first produced as a 1000 μ g/mL stock solution and then diluted. 500 μ L of 10% Folin-Ciocalteu reagent, 400 μ L of 1 M sodium carbonate, and 50 μ L of each diluted gallic acid solution were placed in an Eppendorf tube. The combination was incubated for 30 minutes, and then its absorbance at a wavelength of 765 nm was measured using a UV-visible spectrophotometer. A calibration curve for gallic acid was created using the absorbance values that were obtained. A blank solution was created by mixing 50 μ L of methanol with 500 μ L of 10% Folin-Ciocalteu reagent and 1 M sodium carbonate [16]. Following the same protocol as the gallic acid standard, the total phenol content of the n-hexane, ethyl acetate, and ethanol

extracts was ascertained. To create a stock solution, each extract was treated with pro-analysis methanol. Each extract was measured six times. The total phenol content of each extract was calculated using the linear regression equation of the gallic acid calibration curve and displayed as milligrams of gallic acid equivalent (GAE) per gram of extract (mg GAE/g).

Total flavonoid content (TFC)

The Chang technique was used to calculate the total flavonoid content [17]. In order to create concentrations ranging from 40 to 110 μ g/mL, 500 μ g/mL of quercetin was produced in a stock solution and then diluted. Five hundred microliters of pure water, 300 microliters of methanol, 20 microliters of 10% aluminum chloride, 20 microliters of 1 M sodium acetate, and 100 microliters of each diluted quercetin solution were combined. The combination was incubated for 30 minutes, and then its absorbance at a wavelength of 415 nm was measured using a UV-visible spectrophotometer. A blank solution was created by combining 400 μ L of methanol, 20 μ L of 1 M sodium acetate, 560 μ L of distilled water, and 20 μ L of 10% aluminum chloride. Next, using the acquired absorbance values, the quercetin calibration curve was produced.

Each extract was expressed as milligrams of quercetin equivalent (QE) per gram of extract (mg QE/g) after the total flavonoid content was determined using the linear regression equation of the quercetin calibration curve. Measurements of each extract's total flavonoid content were conducted in six duplicates using the same approach as the standard.

Antioxidant activities

DPPH method

The DPPH method was used to measure antioxidant activity using ascorbic acid as a reference. A stock solution was made with 50 μ g/mL of DPPH. The ascorbic acid stock solution was made by dissolving 20 mg of ascorbic acid in 100 mL of pro-analysis methanol. Ascorbic acid solutions at a range of concentrations (10 μ L, 12.5 μ L, 15 μ L, 20 μ L, 25 μ L, 30 μ L, 35 μ L, and 40 μ L) were made using the stock solution. Pro-analysis methanol was then added to each solution until the final volume was 125 μ L. Following the addition of 750 μ L of the DPPH solution, the mixture was sealed and left in a dark location for half an hour. The UV-visible spectrophotometer was adjusted at 517 nm to measure the absorbance. To obtain a regression equation, the percentage of inhibition was computed at every concentration, and a calibration curve of the ascorbic acid inhibition % was made.

The extract solution was made by dissolving it in pro-analysis methanol, filtering it, and using the filtrate as the sample. The ascorbic acid standard's treatment process was applied to the extract as well [18-23]. Six duplicates of each extract were used for the measurements. After the DPPH inhibition percentage of the sample was established, the antioxidant activity of the sample was calculated by utilizing the ascorbic acid regression equation

to input the inhibition % value. According to Celep *et al.* [24], the antioxidant activity was then translated into milligrams of ascorbic acid equivalent antioxidant capacity (AEAC) per gram of sample (mg AEAC/g for short).

CUPRAC method

The CUPRAC approach employed ascorbic acid as a standard to measure antioxidant activity. Five milliliters of cupric chloride (1705 µg/mL) and five milliliters of neocuproine (1562 µg/mL) were combined to create a CUPRAC stock solution. CUPRAC solution 100 µg/mL was made from the stock solution. Five concentration series of the standard were established by extracting 15 µL, 17.5 µL, 20 µL, 22.5 µL, 25 µL, 27.5 µL, 30 µL, and 35 µL from a 200 µg/mL ascorbic acid stock mixture and placing them in separate Eppendorf tubes. Each tube received 750 µL of the CUPRAC solution after ammonium acetate buffer was added until the final volume was 250 µL. The mixture was incubated for 30 minutes, and the absorbance at 450 nm was measured using a UV-visible spectrophotometer. An ascorbic acid concentration calibration curve was produced by processing the three measurements of each standard concentration.

The extract solution was prepared by dissolving the extract in pro-analysis methanol, filtered, and used as a sample. Six duplicates of the extract solution were tested for absorbance, and the regression equation for the standard solution was used to calculate the antioxidant activity. Milligrams of AEAC per gram was used to quantify the antioxidant activity [25].

Determination of flavonoids by HPLC

Using the HPLC LC-20AD equipment, the flavonoid compounds in the selected *S. polyanthum* extract were identified and determined using a mobile phase made of methanol and water with a linear gradient of 40–60% methanol for 5 minutes, 70% methanol for 10 minutes, and 40% methanol for 15 minutes. As the stationary stage, LiChrospher® 100 RP-C18 5 µm (100 mm length, 4 mm diameter, 20 mm pre-column (Merck)) was used. At 30°C and a flow quantity of 1 mL/min, a 20 µL injection volume was administered. 360 nm was the wavelength of the UV-visible detector that was employed for detection. The one-point approach was utilized for the measurement of flavonoids. Apigenin, kaempferol, rutin, quercetin, and apigenin-7-O-glucoside were the requirements. A syringe was used to combine the criteria and the chosen extract in methanol for liquid chromatography. A 0.45 µm membrane filter was used to filter the mixture prior to HPLC analysis.

Statistical analysis

To determine the significance of the data and the correlations between the variables, statistical analysis was performed using Minitab software. Every result was presented using the mean ± standard deviation. Pearson's correlation analysis was used to determine the link between antioxidant activity, total phenolic content (TPC), and total flavonoid content (TFC), as well as the

correspondence between different antioxidant activity test techniques [26].

Results and Discussion

Determination of plants

The plant was recognized by the Bandungense Herbarium Laboratory, Biology Study Program, School of Life Sciences and Technology, Bandung Institute of Technology, based on an analysis of its morphology. Based on the findings of the determination, the plant was identified as *S. polyanthum* (Wight) Walp., a member of the Myrtaceae family.

Extraction

Salam leaves have potential to be used as a natural preservative because salam leaves contains phenols, tannins, flavonoids which are antioxidant and antimicrobial agents [11]. The unused parts of salam namely roots and twigs may be contained similar compounds and give similar activity. Therefore, sample in this study were leaves, roots and twigs of salam (*S. polyanthum*). The reflux technique was used to extract the powdered crude drug from the salam leaves, roots, and twigs using n-hexane, ethyl acetate, and ethanol, which are increasing polarity solvents. The "like dissolves like" concept, which states that a substance will dissolve in a solvent with a comparable polarity, is applied during the extraction process. As a result, substances were separated according to their polarity using these three solvents with varying polarities. largely nonpolar molecules were recovered from n-hexane, largely semi-polar compounds from ethyl acetate, and principally polar compounds from ethanol.

Total phenolic content (TPC) and total flavonoid content (TFC)

The TPC values, which were determined using gallic acid as a standard, are displayed in **Table 1**. For gallic acid, the linear regression formula was $y = 0.0054x + 0.0385$, with $R^2 = 0.9963$. The TPC values of each salam extract sample ranged from 14.963 to 292.284 mg GAE/g. At 292.284 ± 12.309 mg GAE/g, the salam root ethanol extract exhibited the highest total phenol content (TPC). At 14.963 ± 2.271 mg GAE/g, the n-hexane extract of salam roots exhibited the lowest total phenol content (TPC). According to Luliana *et al.* [27], the TPC values for methanol extracts of salam leaves vary depending on the extraction method used. The extract obtained using the Soxhlet method had a TPC value of 227.72 ± 21.6 mg GAE/g, the maceration method yielded 338.62 ± 21.3 mg GAE/g, and the infusion method resulted 144.48 ± 8.20 mg GAE/g. The TPC value of methanol-water extract from salam bark was reported as 856 ± 28.2 mg GAE/g [28]. The TPC value of ethanol extract from salam leaves obtained by maceration was 2.21 ± 0.24 mg GAE/g [29]. It was not comparable to the current study, which showed the TPC of ethanol leaves extract of salam around 258.436 mg GAE/g. Another investigation found that the

methanol extracts of salam root bark and stem bark had TPC values of 189.80 ± 2.0 mg GAE/g and 187.50 ± 1.3 mg GAE/g, respectively [30]. Compared to the current investigation, which revealed that the TPC of salam ethanol roots extract was about 292.284 mg GAE/g, it was lower.

TFC values were calculated using quercetin as a standard and are shown in **Table 1**. The R^2 value for quercetin was 0.9938, and the linear regression equation was $y = 0.0074x - 0.0417$. Each salam extract sample had a different TFC, which ranged from 5.593 to 84.467 mg QE/g. At 84.467 ± 7.87 mg QE/g, the salam leaves ethyl acetate extract exhibited the greatest total flavonoid content (TFC). The salam root ethanol extract had the lowest total flavonoid content (TFC), measuring 5.593 ± 1.625 mg QE/g. Dewijanti *et al.* [31] reported that the TFC values for salam leaf aqueous extracts differed by area, with extracts from East Java having 20.80 ± 2.36 μ g QE/mg, Central Java having 52.05 ± 6.25 μ g QE/mg, and West Java having 33.90 ± 3.61 μ g QE/mg. The methanol extracts of salam root bark and stem bark had TFC values of 134.85 ± 0.5 mg QE/g and 114.82 ± 2.3 mg QE/g, respectively, according to Sabandar *et al.* [30]. It was not comparable to the current study, which showed the TFC of ethanol extract of salam roots around 5.593 mg QE/g. Similar to the current study, which revealed the TFC of ethanol extract of salam leaves at about 28.402 mg GAE/g, the other study's TFC value for the extract of salam leaves made with 70% ethanol and extracted by maceration was 30.57 mg QE/g [32].

The differences in TPC and TFC values between the conducted experiment and the literature can occur for several reasons. These differences may arise due to variations in extraction methods, including the solvents used, extraction temperature, and extraction techniques [33]. Additionally, differences in the extracted compounds can also be influenced by the plant's location of origin, as atmospheric and environmental factors such as rainfall and sunlight intensity may vary [34].

Total phenol content (TPC) is measured in alkaline circumstances using the Folin-Ciocalteu reagent. The hydroxyl groups in gallic acid phenolate ions react with the Folin-Ciocalteu reagent to form a blue molybdenum-tungsten complex, which may be identified by reducing heteropoly acid (phosphomolybdate-phosphotungstate) using a spectrophotometer calibrated to 765 nm. The measurement techniques for total flavonoid content using aluminum chloride are based on the colorimetric methodology. Aluminum chloride reacts with the hydroxyl group at the C3'-C4', the keto group at the C-4 atom, and the hydroxyl group at the adjacent C-3 or C-5 atoms of flavones and flavonols to cause the solution to become yellow. This complex shifts the wavelength toward the visible spectrum [35]. Sodium carbonate is added to maintain alkaline condition in this reaction because complex aluminum chloride with C3'-C4' will be broken in acid condition [36].

Natural phenolic and flavonoid compounds are secondary metabolites in which at least one hydroxyl group and an aromatic ring are present [37]. Because they donate electrons, phenolic substances are the source of antioxidant activity, and their hydroxyl groups directly contribute to their antioxidant

properties [38]. These substances can help prevent oxidative illnesses brought on by free radicals by inhibiting them [39]. Secondary metabolites called flavonoids have antioxidant properties that are dependent on the quantity and location of free OH groups [40]. The flavonoid group exhibits the best antioxidant activity when there is a higher presence of hydroxyl groups in the structure mainly in C3' and C4', and or a double bond between C2 and C3, and or hydroxyl group in C3, and or a 4-carbonyl group [41].

Antioxidant activities (DPPH and CUPRAC method)

Table 1 showed the antioxidant activity that was measured using DPPH methods. Ascorbic acid was utilized a standard in DPPH method. Using the DPPH technique, the ascorbic acid linear regression equation was $y = 12.19x + 10.034$, and $R^2 = 0.9913$. The antioxidant activity by DPPH in all salam extract samples showed varying results, ranging from 4.559 to 502.989 mg AEAC/g. The ethanol extract of salam roots had the top antioxidant activity, measured 502.989 ± 23.422 mg AEAC/g. Meanwhile the n-hexane extract of salam roots had the lowest antioxidant activity, measured 4.559 ± 0.151 mg AEAC/g. Using the DPPH test, Lelono *et al.* [28] found that the methanol-water extract of *S. polyanthum* bark had an antioxidant activity of 449 ± 23.5 mg AEAC/g. The 96% ethanol extract of *S. polyanthum* leaves, extracted using maceration, had an IC_{50} value of 88.21 ± 1.38 μ g/mL, whereas the extract obtained using the ultrasound-assisted extraction method had an IC_{50} value of 41.23 ± 6.11 μ g/mL [42]. The IC_{50} value of the ethanol extract of *S. polyanthum* leaves extracted through maceration varies depending on the leaves condition. The IC_{50} value of the young leaves extract was 37.441 μ g/mL, while the half-mature leaves extract was 14.889 μ g/mL, and the mature leaves extract was 11.001 μ g/mL [43]. The IC_{50} value of *S. polyanthum* leaves methanol extract was 90.85 μ g/mL [44]. The EC_{50} value for the DPPH of the methanol extract from *S. polyanthum* leaves obtained via maceration was 20.90 ± 0.26 μ g/mL [45]. The IC_{50} values for different extracts of *S. polyanthum* leaves were as follows: n-hexane extract 136.7 μ g/mL, dichloromethane extract 126.1 μ g/mL, ethyl acetate extract 56.7 μ g/mL, and methanol extract 44.35 μ g/mL [28].

Antioxidant activity was determined by CUPRAC methods and presented in **Table 1**. The CUPRAC method was determined using ascorbic acid as a standard. The linear regression equation for ascorbic acid with the CUPRAC method was $y = 7.9501x + 16.888$, with $R^2 = 0.9905$. The CUPRAC method in all salam extract samples, ranging from 27.417 to 108.069 mg AEAC/g. Based on the CUPRAC method, the highest antioxidant activity was found in the salam leaves ethyl acetate extract, measuring 108.069 ± 3.797 mg AEAC/g. The n-hexane extract of salam roots had the lowest antioxidant activity, measured 27.417 ± 3.354 mg AEAC/g.

Researchers [46] reported that the antioxidant activity of all fractions of *S. polyanthum* leaves was as follows: n-hexane extract 0.50 ± 0.01 TEAC (mmol/g)^c, dichloromethane extract 0.46 ± 0.01 TEAC (mmol/g)^c, ethyl acetate extract 0.40 ± 0.01 TEAC (mmol/g)^c, methanol residue extract 2.26 ± 0.01 TEAC (mmol/g)^c, and water extract 0.19 ± 0.01 TEAC (mmol/g)^c. TEAC (mmol/g)^c refers to the trolox equivalent antioxidant capacity in mmol/g at 200 mg/mL. The ethanol extract of *Syzygium aqueum* leaves and twigs had the best antioxidant activity using the CUPRAC method, measured 221.47 ± 9.18 mg AEAC/g and 222.51 ± 10.44 mg AEAC/g [43].

Determining antioxidant activity using the DPPH and CUPRAC methods yields different results due to the distinct mechanisms involved. The DPPH method consists of a hydrogen transfer mechanism, whereas the CUPRAC method involves an electron transfer mechanism [47]. The stable free radical DPPH that interacts with antioxidants through an electron transfer process. This approach measures the decrease of DPPH radicals to estimate antioxidant activity. When reacting with antioxidants, the DPPH free radicals are reduced, changing the color from purple to yellow [48]. The DPPH assay relies on scavenging DPPH by antioxidants, which can donate hydrogen [49].

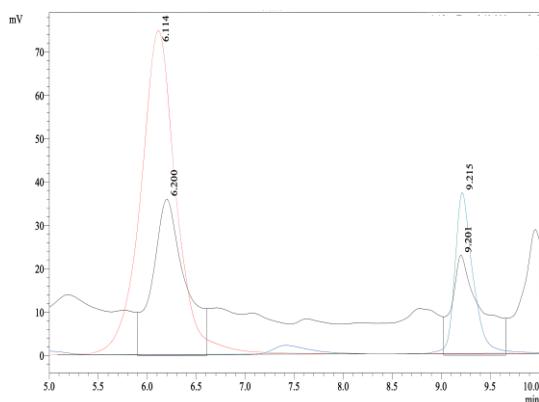
The determination of antioxidant activity using the CUPRAC method employs the copper (II)-neocuproine reagent as the chromogenic oxidant, which facilitates the reduction of Cu²⁺ - neocuproine to Cu⁺ - neocuproine through the action of antioxidants present in the plant extracts. This reduction results in a chromophore with a maximum absorbance at a wavelength of 450 nm [45]. Neocuproine is 2,9-dimethyl-1,10-phenanthroline. In this method, a color change occurs from light blue (due to the Cu²⁺-neocuprine to orange-yellow to the reduced Cu⁺-neocuproine). A compound that can exhibit antioxidant activity if it can reduce or possesses an E⁰ value lower than the Cu²⁺- neocuproine /Cu⁺-neocuproine system (0.6 V) [43].

Based on the present study, the TFC values of the n-hexane extract samples from the roots and twigs were similar, measuring 30.623 and 30.734 mg QE/g, respectively. However, the two samples showed different results in the antioxidant activity tests using the DPPH and CUPRAC methods. In the DPPH method, both samples exhibited antioxidant capacity values of 4.559 and 19.759 mg AEAC/g. In contrast, the CUPRAC method yielded antioxidant capacity values of 27.417 and 33.333 mg AEAC/g for the two samples.

According to Pourmorad *et al.* [16], a sample's high TFC value does not always mean that it has strong antioxidant activity, which might lead to this outcome. The chemical composition of a sample's flavonoid components, rather than just the quantity of flavonoids present, plays a significant role in its antioxidant activity. Flavonoids with hydroxyl groups at positions C3' and C4' on ring B, a hydroxyl group at C3, a ketone group at C4, and a double bond between C2 and C3 tend to exhibit strong antioxidant activity [42]. This structure enables flavonoids to effectively neutralize free radicals. The DPPH method works by measuring the ability of antioxidants to donate hydrogen atoms

or to contain hydroxyl groups. Therefore, if a sample has a high TFC value but shows low antioxidant activity in the DPPH assay, it may be due to the absence of key hydroxyl groups in its flavonoid compounds. In other words, even if two samples have similar TFC values, their DPPH antioxidant activities may differ because the flavonoid components in each sample may have different structural characteristics.

In the CUPRAC method, metal ions are reduced by antioxidants for example, Cu²⁺ is reduced to Cu⁺. The ability of a compound to reduce metal ions depends on its standard reduction potential (E⁰). A compound that can exhibit antioxidant activity if it can reduce or possesses an E⁰ value lower than the Cu²⁺- neocuproine /Cu⁺-neocuproine system (0.6 V) [43]. Therefore, if a sample contains a high amount of flavonoids but does not have an E⁰ value lower than 0.6 V (lacks strong reducing power), it will not expose high antioxidant activity. This also explains why two samples with similar TFC values may show different antioxidant activities in the CUPRAC assay; the flavonoid structures in each sample may vary, resulting in different reducing capacities. Furthermore, the existence of additional active chemicals such tannins, alkaloids, or other bioactive substances may be the cause of a sample's low TFC value but significant antioxidant activity.


Table 1. TPC, TFC, and Antioxidant Activity of various salam extracts

Extract	TPC (mg GAE/g)	TFC (mg QE/g)	DPPH (mg AEAC/g)	CUPRAC (mg AEAC/g)
Leaves	n-Hexane	36.728	39.619	43.440
	Ethyl acetate	87.5	84.467	132.028
	Ethanol	258.436	28.402	436.712
Roots	n-Hexane	14.963	30.623	4.559
	Ethyl acetate	90.401	5.519	133.502
	Ethanol	292.284	5.593	502.989
Twigs	n-Hexane	31.559	30.734	19.759
	Ethyl acetate	55.103	44.374	45.112
	Ethanol	127.222	7.668	123.076
				54.907

Determination of flavonoids by HPLC

Generally, many literatures stated that flavonoid is the natural compounds that related with antioxidant activity. Then, identification and quantification of flavonoid constituent levels in the chosen extract using HPLC. The ethanolic salam roots extract had the top antioxidant with DPPH method were choosing as the selected extract. In *S. polyanthum*, particularly in the leaves, the commonly found flavonoid compounds are kaempferol, quercetin, and rutin [49]. The two most prevalent flavonoids in the Myrtaceae family are quercetin and kaempferol [32]. Since the primary flavonoids in the *Syzygium* genus are apigenin-7-O-glucoside, quercetin, apigenin, and kaempferol, the reference compounds—which included rutin, quercetin,

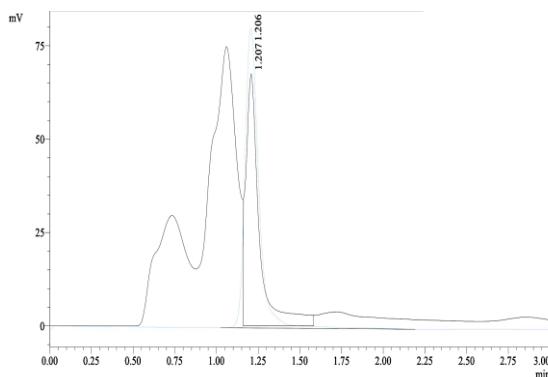

kaempferol, apigenin, and apigenin-7-O-glucoside—were used as standards [46, 50].

Figure 1. Black line indicates sample (40000 μ g/mL), red line indicates apigenin-7-O-glucoside (50 μ g/mL), and green line indicates apigenin (100 μ g/mL) in this high performance liquid chromatogram of ethanolic salam root extract and references.

Table 2. Level of apigenin and apigenin 7-O- glucoside in salam roots ethanol extract

Compound	AUC		
	Reference	Sample	Level (mg/g)
Apigenin-7-O-glucoside	828585		
	1888779	809638	0.529 \pm 0.023
Apigenin	484448		
	487856	475189	2.368 \pm 0.160
		426481	

Figure 2. ethanolic salam root extract and references in a high performance liquid chromatogram; Green line: rutin (25 μ g/mL); black line: sample (5000 μ g/mL).

Table 3. Level of rutin in salam roots ethanol extract

Compound	AUC		
	Reference	Sample	Level (mg/g)
Rutin	583763		
	463962	376469	4.861 \pm 1.241
		393085	

Figures 1 and 2 displayed the HPLC chromatograms of the ethanol extract of *S. polyanthum* roots in contrast to the standard, while **Tables 2 and 3** displayed the amounts of flavonoid components in the selected extract. The extract's flavonoid components exhibited retention periods that were in line with the benchmarks. The chromatogram showed that just one peak in the extract coincided with the peaks of the flavonoid standard chromatogram. At 6.2 minutes, the extract's chromatogram matched that of the apigenin-7-O-glucoside standard, which had a 6.114-minute retention period. A concentration of 0.529 ± 0.023 mg/g of apigenin-7-O-glucoside was found in the extract when it was quantified using the one-point technique. The chromatogram, which had a retention duration of 9.215 minutes, was comparable to the apigenin standard at 9.201 minutes. It was determined that the extract's apigenin concentration was 2.368 ± 0.160 mg/g using the one-point technique. Additionally, the chromatogram at 1.207 minutes resembled the rutin standard, with a retention time of 1.206 minutes. The rutin content in the extract, as determined by the one-point method, was 4.861 ± 1.241 mg/g.

According to Hartati *et al.* [46], the ethanol extract of green honey deli apple (*Syzygium aqueum*) contains 0.16% and 0.39% of two flavonoid components, quercetin and kaempferol, respectively. Discrepancies in the identification and quantification of flavonoid compounds in the extract might be due to differences in species, growing regions, and harvest seasons [51-54].

Correlation analysis between TPC, TFC, and antioxidant activities

The two antioxidant activities, TPC and TFC, were tested for linearity using Pearson's correlation, which yields linear findings if both demonstrate significant and positive results.

Table 4. Correlation of TPC and TFC with antioxidant parameters

Extract	Pearson's Correlation Coefficient (r)				
	Antioxidant DPPH		Antioxidant CUPRAC		
	TPC	TFC	TPC	TFC	
n-Hexane	Leaves	0.987****	0.952****	0.968****	0.878***
	Roots	0.933****	0.902****	0.916****	0.887***
	Twigs	0.763***	0.874***	0.808***	0.796***
Ethyl	Leaves	0.863***	0.704***	0.911****	0.819***
	Roots	0.935****	0.878***	0.987****	0.915****
	Twigs	0.694**	0.848***	0.886***	0.838***
Ethanol	Leaves	0.951****	0.879***	0.870***	0.907****
	Roots	0.976****	0.768***	0.736***	0.915****
	Twigs	0.989****	0.522**	0.965****	0.693**

Table 5. Correlation of DPPH and CUPRAC methods

		Pearson's Correlation Coefficient (r)
Antioxidant DPPH		Antioxidant CUPRAC
n-Hexane	Leaves	0.944****
	Roots	0.991****
	Twigs	0.963****
Ethyl Acetate	Leaves	0.892***
	Roots	0.936****
	Twigs	0.850***
Ethanol	Leaves	0.975****
	Roots	0.766***
	Twigs	0.969****

The results of TPC and TFC's antioxidant activity and Pearson's correlation were shown in **Table 4**. DPPH and CUPRAC's Pearson's correlation was shown in **Table 5**. The correlation analysis was conducted using Minitab software, and results showed moderate to extremely strong correlations, with values ranging from 0.522 to 0.991. According to Schober *et al.* Pearson's correlation coefficient values of 0.00-0.10 signal a very weak relationship, 0.10-0.39 a weak correlation, 0.40-0.69 a moderate correlation, 0.70-0.89 a strong correlation, and 0.90-1.00 a very high correlation [55].

According to the DPPH and CUPRAC techniques, phenolic and flavonoid molecules are important contributors to antioxidant activity. TPC and TFC showed moderate to very substantial associations with these antioxidant values. Additionally, TPC and TFC demonstrated a strong and favorable association with antioxidant activity (DPPH and CUPRAC). The methanol extract from salam bark's TPC showed a very strong correlation with DPPH antioxidant activity, with a value of 0.9031, while the TFC showed a moderate correlation with DPPH antioxidant activity, with a value of 0.5639, as reported by Sabandar *et al.* [30]. Additionally, a linear connection in the antioxidant activity as determined by the DPPH and CUPRAC tests was suggested by the significant to very strong correlation that was found between them.

Conclusion

Using the CUPRAC technique, the salam leaf ethyl acetate extract exhibited the best antioxidant activity, measuring 108.069 ± 3.797 mg AEAC/g, whereas the salam root ethanol extract showed the highest DPPH antioxidant activity, with a value of 502.989 ± 23.422 mg AEAC/g. The extracts of salam leaves, roots, and twigs included phenolic and flavonoid substances that moderately to strongly correlated with antioxidant activity. The DPPH and CUPRAC techniques' measurements of antioxidant activity revealed a linear relationship with strong to extremely significant correlations. The unused parts of salam, namely roots contained rutin, apigenin and apigenin-7-O-glucoside. The roots of salam have potential for development as a novel source of antioxidant agent.

Acknowledgments: The author would like to thank the School of Pharmacy, Bandung Institute of Technology, for providing the facilities to conduct this research.

Conflict of interest: None

Financial support: This study was funded by PPMI Grant 2025 No 26D/IT1.C10/SK-KU/2025 from Institute for Research and Community Service – Bandung Institute of Technology.

Ethics statement: None

References

1. Barba FJ, Roohinejad S, Ishikawa K, Leong SY, Bekhit AEDA, Saraiva JA, et al. Electron spin resonance as a tool to monitor the influence of novel processing technologies on food properties. *Trends Food Sci Technol.* 2020;100:77–87. doi:10.1016/j.tifs.2020.03.032
2. Chandimali N, Bak SG, Park EH, Lim HJ, Won YS, Kim EK, et al. Free radicals and their impact on health and antioxidant defenses: a review. *Cell Death Discov.* 2025;11(1):19. doi:10.1038/s41420-024-02278-8
3. AlHussain BS, AlFayez AA, AlDuhaymi AA, AlMulhim EA, Assiri MY, Ansari SH. Impact of different antibacterial substances in dental composite materials: a comprehensive review. *Int J Dent Res Allied Sci.* 2022;2:1–7. doi:10.51847/jg2xu2PbJK
4. Shahzan S, Paulraj J, Maiti S. Impact of rubber dam use on anxiety levels in children during dental procedures: a randomized controlled study. *Int J Dent Res Allied Sci.* 2023;3:17–23. doi:10.51847/RmzKyVOFF6
5. Martemucci G, Costagliola C, Mariano M, D'Andrea L, Napolitano P, D'Alessandro AG. Free radical properties, source and targets, antioxidant consumption and health. *Oxygen.* 2022;2(2):48–78. doi:10.3390/oxygen2020006
6. Mustafa RM, Alshali RZ, Bukhary DM. Evaluating Saudi dentists' compliance with safety protocols during COVID-19. *Ann J Dent Med Assist.* 2023;3(1):1–10. doi:10.51847/9vx0wN0iuZ
7. Deana NF, Seiffert A, Aravena-Rivas Y, Alonso-Coello P, Muñoz-Millán P, Espinoza-Espinoza G, et al. Review of available studies and guidelines in the field of prevention of COVID-19 infection in dental centers. *Ann J Dent Med Assist.* 2022;2:1–7. doi:10.51847/4VxEtFTh77
8. Choudhary P, Guleria S, Sharma N, Salaria KH, Chalotra R, Ali V, et al. Comparative phenolic content and antioxidant activity of some medicinal plant extracts prepared by choline chloride based green solvents and methanol. *Curr Res Green Sustain Chem.* 2021;4:100224. doi:10.1016/j.crgsc.2021.100224
9. Uddin ABMN, Hossain F, Reza ASMA, Nasrin MS, Alam AHMK. Traditional uses, pharmacological activities, and phytochemical constituents of the genus *Syzygium*: a

review. *Food Sci Nutr.* 2022;10(6):1789–819. doi:10.1002/fsn.3.2797

10. Hasan R, Siregar GA, Lindarto D. *Syzygium polyanthum* reduced TNF- α and ADAM17 protein expression in myocardial infarction rat model. *Med Arch.* 2020;74(6):416–20. doi:10.5455/medarh.2020.74.416-420
11. Julizan N, Ishmayana S, Zainuddin A, Hung PV, Kurnia D. Potential of *Syzygium polyanthum* as natural food preservative: a review. *Foods.* 2023;12(12):2275. doi:10.3390/foods12122275
12. Pavlova Z. Material properties and clinical performance of 3D-printed complete dentures: a systematic review. *Ann Orthod Periodontics Spec.* 2024;4:14–25. doi:10.51847/62izsGtXh4
13. Patatou A, Iacovou N, Zaxaria P, Vasoglou M, Vasoglou G. Corticotomy-assisted orthodontics: biological basis and clinical applications. *Ann Orthod Periodontics Spec.* 2022;2:8–13. doi:10.51847/0qGERVSoQm
14. Alharbi IS, Alharbi AS, Ansari SH. Public awareness and perceptions of orthodontic treatment with Invisalign in Qassim, Saudi Arabia. *Turk J Public Health Dent.* 2022;2:13–8. doi:10.51847/DrpPRdrDrf
15. Harmouche L, Courval A, Mathieu A, Petit C, Huck O, Severac F, et al. A split-mouth study comparing photodynamic therapy and scaling and root planning in the treatment of chronic periodontitis. *Turk J Public Health Dent.* 2022;2:23–30. doi:10.51847/0UkmY1pJvP
16. Pourmorad F, Hosseiniemehr SJ, Shahabimajd N. Antioxidant activity, phenol, and flavonoid contents of some selected Iranian medicinal plants. *Afr J Biotechnol.* 2006;5(11):1142–5.
17. Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. *J Food Drug Anal.* 2002;10(3):178–82.
18. Prada AM, Cicalău GIP, Ciavoi G. Resin infiltration for white-spot lesion management after orthodontic treatment. *Asian J Periodontics Orthod.* 2024;4:19–23. doi:10.51847/ZTuGEanCSV
19. Samaranayake L, Tuygunov N, Schwendicke F, Osathanon T, Khurshid Z, Boymuradov SA, et al. Artificial intelligence in prosthodontics: transforming diagnosis and treatment planning. *Asian J Periodontics Orthod.* 2024;4:9–18. doi:10.51847/nNyZ6VD1da
20. Mobeen T, Dawood S. Studying the effect of perceived social support and mental health on marital burnout in infertile women. *J Integr Nurs Palliat Care.* 2022;3:7–12. doi:10.51847/7DkM3Fkiu3
21. Sheshadri A, Kittiskulnam P, Johansen KL. Investigating the effects of physical activity on the amount of muscle cramp pain in hemodialysis patients. *J Integr Nurs Palliat Care.* 2024;5:8–13. doi:10.51847/wZhaI3rJNj
22. Wolderslund M, Kofoed P, Ammentorp J. Investigating the effectiveness of communication skills training on nurses' self-efficacy and quality of care. *J Integr Nurs Palliat Care.* 2024;5:14–20. doi:10.51847/55M0sHLo3Z
23. İlhan N, Telli S, Temel B, Aşti T. Investigating the sexual satisfaction mediating role in the relationship between health literacy and self-care of men with diabetes and women's marital satisfaction. *J Integr Nurs Palliat Care.* 2022;3:19–25. doi:10.51847/sFjL3OLpqg
24. Celep E, Charehsaz M, Akyuz S, Acar ET, Yesilada E. Effect of in vitro gastrointestinal digestion on the bioavailability of phenolic components and the antioxidant potentials of some Turkish fruit wines. *Int Food Res J.* 2015;78:209–15. doi:10.1016/J.FOODRES.2015.10.009
25. Özyürek M, Bektasoglu B, Güclü K, Güngör N, Apak R. Simultaneous total antioxidant capacity assay of lipophilic and hydrophilic antioxidants in the same acetone–water solution containing 2% methyl-cyclodextrin using the cupric reducing antioxidant capacity (CUPRAC) method. *Anal Chim Acta.* 2008;630(1):28–39. doi:10.1016/j.aca.2008.09.057
26. Muliani L, Puspita G, Anggai RA. The effectiveness of salam leaf extract (*Syzygium polyanthum*) test in reduce uric acid levels in male white rats (*Rattus norvegicus*). *J Health Technol Sci.* 2022;2:43–52. doi:10.47918/jhtsv2i3.276
27. Luliana S, Riza H, Indriyani EN. The effect of extraction method on total phenolic content and antioxidant activity of salam leaves (*Syzygium polyanthum*) using DPPH (1,1-Diphenyl-2-Picrylhidrazil). *Trad Med J.* 2019;24(2):72–6. doi:10.22146/ijc.54577
28. Lelono RAA, Tachibana S, Itoh K. In vitro antioxidative activities and polyphenol content of *Eugenia polyantha* Wight grown in Indonesia. *Pak J Biol Sci.* 2009;12(24):1564–70. doi:10.3923/pjbs.2009.1564.1570
29. Rohaeti E, Karunina F, Rafi M. FTIR-based fingerprinting and chemometrics for rapid investigation of antioxidant activity from *Syzygium polyanthum* extracts. *Indones J Chem.* 2021;21(1):128–36. doi:10.22146/ijc.54577
30. Sabandar CW, Jalil J, Ahmat N, Aladdin NA, Zawawi NKNA, Sahidin I. Anti-inflammatory and antioxidant activity of *Syzygium polyanthum* (Wight) Walp. *Sains Malays.* 2022;51(5):1475–85. doi:10.17576/jsm-2022-5105-17
31. Dewijanti ID, Mangunwardoyo W, Dwiranti A, Hanafi M, Artanti N. Effects of the various source areas of Indonesian bay leaves (*Syzygium polyanthum*) on chemical content and antidiabetic activity. *Biodiversitas.* 2020;21(3):1190–5. doi:10.13057/biodiv/d210345
32. Insyirah A, Prijadi SM, Az-Zahra F, Hanasah AN, Zuhrotun A. Assessment of total phenolic and flavonoid content from nine different families of herbal medicines originated from West Java, Indonesia. *Indones J Pharm Sci Technol.* 2025;12(1):49–62. doi:10.24198/ijpst.v12i1.53533
33. Muzolf-Panek M, Gliszczynska-Świglo A. Extraction optimization for the antioxidants from *Nigella sativa* seeds

using response surface methodology. *Food Measure.* 2022;16(6):4741–53. doi:10.1007/s11694-022-01575-z

34. Chen J, Ning S, Lu X, Xiang W, Zhou X, Bu Y, et al. Variation in flavonoid and antioxidant activities of *Pyrrosia petiolosa* (Christ) Ching from different geographic origins. *Front Plant Sci.* 2023;14:1173489. doi:10.3389/fpls.2023.1173489

35. Sultana S, Hossain ML, Sostaric T, Lim LY, Foster KJ, Locher C. Investigating flavonoids by HPTLC analysis using aluminium chloride as derivatization reagent. *Molecules.* 2024;29(21):5161. doi:10.3390/molecules29215161

36. Mutha RE, Tatiya AU, Surana SJ. Flavonoids as natural phenolic compounds and their role in therapeutics: an overview. *Futur J Pharm Sci.* 2021;7(1):25. doi:10.1186/s43094-020-00161-8

37. Gulcin İ. Antioxidants: a comprehensive review. *Arch Toxicol.* 2025;99:1893–7. doi:10.1007/s00204-025-03997-2

38. Kostić K, Brborać J, Delogu G, Simić MR, Samardžić S, Maksimović Z, et al. Antioxidant activity of natural phenols and derived hydroxylated biphenyls. *Molecules.* 2023;28(6):2646. doi:10.3390/molecules28062646

39. Zhang Q, Yang W, Liu J, Liu H, Lv Z, Zhang C, et al. Identification of six flavonoids as novel cellular antioxidants and their structure-activity relationship. *Oxid Med Cell Longev.* 2020;2020(1):4150897. doi:10.1155/2020/4150897

40. Aditya R, Santoso B, Widijati. Comparative study of bioactive compound content and antioxidant activity in different extraction methods of *Syzygium polyanthum* leaves. *Bali Med J.* 2023;12:3425–30. doi:10.15562/bmjv12i3.4931

41. Bahriul P, Rahman N, Diah AWM. Antioxidant activity test of bay leave (*Syzygium polyanthum*) extract using 1,1-diphenyl-2-picrilhidrazil. *J Acad Chem.* 2014;3(3):368–74.

42. Har LW, Ismail IS. Antioxidant activity, total phenolics and total flavonoids of *Syzygium polyanthum* (Wight) Walp leaves. *Int J Med Aromat Plants.* 2012;2(2):219–28.

43. Munteanu IG, Apetrei C. Analytical methods used in determining antioxidant activity: a review. *Int J Mol Sci.* 2021;22(7):3380. doi:10.3390/ijms22073380

44. Perumal A, Mahmud R, Piaru SP, Cai LW, Ramanathan S. Potential antiradical activity and cytotoxicity assessment of *Ziziphus mauritiana* and *Syzygium polyanthum*. *Int J Pharmacol.* 2012;8(6):535–41. doi:10.3923/ijp.2012.535.541

45. Lestari DA, Ramadhan R, Phuwapraisirisan P, Firdaus YHF, Kurnia IT, Hariyanto NA, et al. Phytochemicals, antidiabetic, and antioxidant activities of *Syzygium polyanthum* achieved by GC-MS analysis, α -glucosidase inhibition and kinetic mechanism along with a free radicals scavenging activities. *Mor J Chem.* 2025;13(1):34–56. doi:10.48317/IMIST.PRSM/morjchem-v13i1.45267

46. Hartati R, Widodo Y, Tarigan C, Fidrianny I. Green honey deli water apple (*Syzygium aqueum* (Burm. f.) Alston “madu deli hijau”): evaluation of antioxidant activities and phytochemical content. *Maced J Med Sci.* 2022;10(A):1429–35. doi:10.3889/oamjms.2022.9743

47. Gulcin İ, Alwasel SH. DPPH radical scavenging assay. *Processes.* 2023;11(8):2248. doi:10.3390/pr11082248

48. Hartati R, Rompis FM, Pramastyta H, Fidrianny I. Optimization of antioxidant activity of soursop (*Annona muricata* L.) leaf extract using response surface methodology. *Biomed Rep.* 2024;21(5):166. doi:10.3892/br.2024.1854

49. Hartanti L, Yonas SMK, Mustamu JJ, Wijaya S, Setiawan HK, Soegianto L. Influence of extraction methods of bay leaves (*Syzygium polyanthum*) on antioxidant and HMG-CoA reductase inhibitory activity. *Heliyon.* 2019;5(4):e01485. doi:10.1016/j.heliyon.2019.e01485

50. Alagesan K, Thennarasu P, Kumar V, Sankarnarayanan S, Balsamy T. Identification of α -glucosidase inhibitors from *Psidium guajava* leaves and *Syzygium cumini* Linn. seeds. *Int J Pharm Sci Res.* 2012;3(2):316–22.

51. Devi YR, Lourembam DS, Modak R, Shantibala T, Subharani S, Rajashekhar Y. Differences in gut microbiota of healthy and tiger band disease-infected oak tasar silkworms (*Antheraea pernyi* J.). *Entomol Lett.* 2023;3:18–27. doi:10.51847/sReC3NTiUx

52. Negreiros AB, Silva GRD, Pereira FDM, Souza BDA, Lopes MTDR, Diniz FM. Evidence of genetic diversity gradients in *Melipona rufiventris* (Hymenoptera: Apidae) within the Brazilian semiarid region. *Entomol Lett.* 2024;4(1):1–7. doi:10.51847/l9Wmr8r6qW

53. Abdelmuhsin AA, Alghamdi AA, Ibrahim NA. Evaluating the phenotypic and genotypic diversity of *Plantago ciliata* in the Ha'il region, Saudi Arabia. *Int J Vet Res Allied Sci.* 2022;2(1):15–23. doi:10.51847/Qd2C6vFTgc

54. Fiodorova OA, Sivkova EI, Nikonov AA. Safeguarding beef cattle from gnats and gadflies in the Southern Tyumen region. *Int J Vet Res Allied Sci.* 2022;2:8–13. doi:10.51847/iVXOeXmSNZ

55. Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. *Anesth Analg.* 2018;126(5):1763–8. doi:10.1213/ANE.0000000000002864