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ABSTRACT 

This article presents ordered and systematized data obtained from modern literary sources devoted to the use of chitosan in tissue 
engineering. At the end of the article, data from our scientific research is presented, in which an attempt was made to create a three-
dimensional scaffold based on chitosan. Sterile scaffolds were subcutaneously sewn into the soft tissues of the withers area or in the area 
of artificial femoral defects of rats. The tissue sections together with the implants were removed 4 and 8 weeks after placement under 
the same conditions. When removing, the mobility of the regenerants in situ, the state of the surrounding fiber, the presence of vessels 
feeding the scaffold, the severity of the adhesive process, and the degree of biodegradation of the scaffolds were evaluated. In the field 
of bone defect replacement, attention was paid to the degree of osseointegration, the completeness of the closure of the defect, and the 
density of the regeneration. The analysis of modern world literature and the results of our experiments show that the main components 
of the innovative trend and the use of chitosan for tissue engineering of articular cartilage are: modification of chitosan scaffold by 
copolymerization with various organic compounds; improvement of methods for the preparation of three-dimensional biomimetic 
nanostructured chitosan scaffolds; intensification of the use of chitosan-based scaffolds in the process of creating them to improve their 
viscosity-strength, chondroinductive, and antibacterial properties of biologically active additives. 
 

Keywords: Tissue engineering, Scaffold technologies, Chitosan, Cartilage tissue, Hip joint 
 

Introduction   
 

The high rate of development of biomedical technologies in the 

field of medical effects on damaged cartilage is due to a whole 

range of socio-economic, medical, and general biological factors 

[1, 2]. In particular, an increase in life expectancy is accompanied 

by a prolongation of an active lifestyle among the elderly. As a 

result, the frequency of joint damage similarly increases [3, 4]. 

At the same time, there remains a need for a high quality of life 

even in the presence of various diseases [5, 6]. In addition to age-

related changes in joints, it is impossible not to take into account 

the frequency and degree of injury to large joints associated with 

human professional activity [7]. 

The development of medical materials and technologies allows 

the use of predominantly minimally invasive arthroscopic 
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technologies for the treatment of injuries and chronic joint 

diseases [8]. 

At the same time, it must be understood that articular cartilage 

has an initially low ability to recover. Therefore, in most cases, 

during treatment, it is necessary to replace the lost structures and 

functions of articular cartilage and, at the same time, stimulate 

their cells to remodel the defect replacement zone into full-

fledged cartilage tissue [9, 10]. 

Currently, autogenous chondroplasty is considered the best 

option for repairing damaged cartilage. However, this approach 

has several unavoidable limitations and disadvantages, and does 

not provide adequate restoration of full-fledged joint function for 

a long time. Many modern researchers believe that tissue 

engineering technologies will become the next leader in this field 

in the next decade [11-13]. 

The essence of joint tissue engineering consists of the 

development and manufacture of bioengineered scaffolds 

(scaffolds) and their subsequent implantation to the patient to 

compensate for the defect and stimulate regeneration of the 

damaged three-dimensional tissue structure [14]. The key 

problem is to ensure consistent and complete remodeling of the 

tissue-engineered structure into its cartilage. This requires 

predictable control actions on the processes of colonization, 

proliferation, differentiation, and adequate phenotypic 

expression of cells in the substance of the scaffold and the future 

matrix of its cartilage. One of the key approaches to such 

management is the planning and manufacture of a scaffold with a 

predetermined set of these properties [15]. 

To date, there is a fairly wide range of materials suitable for the 

manufacture of scaffolds. The main requirements for these 

materials include their absence of cytotoxicity, their ability to 

elicit an inflammatory and immune response, their ability to 

maintain adhesion, fixation, proliferation, and differentiation of 

cells, their bio-resorbability through conventional metabolic 

pathways, the availability of self-healing abilities, and their ability 

to change their structure and properties in response to 

environmental factors, including mechanical stress [16, 17]. 

One of the promising natural materials that are becoming 

increasingly recognized in the formation of tissue engineering 

structures and possessing most of the above properties is 

modified chondroitin sulfate (chitosan), a deacetylated form of 

the chitin polymer widely distributed in nature [18]. 

The purpose of this scientific work is to substantiate the relevance 

of the use of chitosan for tissue engineering of articular cartilage 

based on data from modern scientific literature and our research. 

Advantages of chitosan-based scaffold 

technologies in cartilage tissue engineering 
A group of Italian scientists led by R. Muzzarelli has been actively 

studying the potential of chitosan use as a material in regenerative 

biomedicine since 1988 [19-21]. These researchers successfully 

applied chitosan scaffolds to replace defects in the dura mater, 

wound surfaces, and fibrous cartilage, noting the subsequent full-

fledged morphological restoration of defects without any 

functional disorders. The authors believe that the beginning of 

the use of chitosan to restore lost supporting tissues has opened 

a new milestone in tissue engineering [22, 23]. 

The availability of raw materials for the production of chitosan 

and the ease of improving its physicochemical properties by 

enzymatic treatment make chitosan a very promising basis for the 

design of modern scaffolds. In addition, chitosan is biomimetic to 

the cartilage's own matrix, non-toxic, and has full 

biocompatibility, bio-resorbability, and moderate antibacterial 

properties. Pronounced chondro- and osteo-inductive effects of 

three-dimensionally organized chitosan have also been 

determined [24, 25]. 

Chitosan scaffolds have a high ability to induce cell migration, 

adhesion, proliferation, and induction of the necessary chondral 

or osteogenic phenotype, as a result of which intensive 

remodeling of bone and cartilage tissue is ensured, while the 

resorption of surrounding tissues is not activated [26]. 

Chitosan has found application in surgical and orthopedic 

dentistry in the treatment of fractures, distraction osteogenesis, 

treatment of osteomyelitis, and osteoporosis. In maxillofacial 

implantology, when titanium implants were coated, chitosan 

reduced the severity of the reaction of surrounding tissues to 

surgery and contributed to accelerated osseointegration of 

implants [23]. 

When creating chitosan scaffolds, it is possible to implement a 

three-dimensional (3D) porous structure with a certain pore size 

and the thickness of the partitions between them. It has been 

empirically established that the restoration of cartilage tissue 

requires porosity values of the order of 80-85%, a pore diameter 

of the order of 150-400 microns, and a thickness of the partitions 

between them of at least 50-70 microns [21]. This is necessary to 

ensure a certain strength, high cell adhesion, and the possibility 

of transporting gases and metabolites in newly formed tissues 

[23]. 

Initially, the high viscosity of chitosan solutions allows the use of 

various methods for creating porous scaffolds: lyophilic drying, 

and foaming with gases. The hard-elastic properties of some 

chitosan modifications proposed for use in tissue engineering 

approach the values peculiar to spongy bone and can withstand a 

compression load of about 75 MPa with pore sizes of about 250-

500 microns [27, 28]. 

Figure 1 shows a systematization of the numerous approaches 

used by specialists to improve the effectiveness of chitosan-based 

scaffold technologies. The most active efforts of researchers are 

currently focused on the modernization of chitosan-based 

scaffold technologies by varying copolymers, switching to 

nanostructured products, and connecting depots of growth 

factors.
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Figure 1. Critical processes affecting the final quality of scaffold technology in the restoration of damaged articular cartilage 

Modifications at the stage of chitosan 

production. Copolymerization 
The chemical activity of chitosan allows for various modifications 

of the polymer with a wide range of biologically active 

components of both organic and inorganic composition. Chitosan 

copolymerizes well with organic polyacids, alginate, polyglycols, 

gelatin, and proteins. It should be noted that when chitosan 

interacts with modifying agents, its biologically active properties 

are not only not lost, but in some cases, they are enhanced [29, 

30]. 

Chitosan initially has moderate antimicrobial activity. This is due 

to the presence of active binding sites for surface toxins, bacterial 

antigens, and effects on other components of their cell wall. 

These properties can be purposefully enhanced by 

copolymerization with acyl residues of organic acids, ligands of 

various organic antiseptics, organometallic compounds (Au, Ag, 

Cu, Ti, and Pt), and surfactants [31-33]. 

Chitosan-polylactide scaffold was copolymerized with 

microspheres of amide-polylactic acid in hexane-diamine-

propanol. One of the ways to form high-quality cartilage tissue is 

to modify the chitosan surface using a porous elastomer made of 

poly-L-lactide-caprolactone.As the wettability improves the 

cellular compatibility of the scaffold increases without 

significantly changing its physical properties [34, 35]. 

Some scientists have determined the degree of influence of 

hyaluronic acid inclusions with different molecular weights on 

chondrogenesis from mesenchymal stem cells cultured on a 

spongy chitosan scaffold [36]. 

The creation of a chitosan-based gel scaffold made it possible to 

obtain a liquid polymer under normal conditions, but taking the 

form of sol at temperatures close to body temperature. This 

became possible after the creation of the chitosan– 

glycerophosphate sodium – hydroxyethylcellulose composite 

[37]. It was determined that chondrocytes in the reconstructed 

cartilage are able not only to survive but also to retain their ability 

to secrete the matrix [38]. 

The processes occurring in cartilage and the subchondral zone of 

bone after the remodeling of micro-defects using an implant 

based on the composition chitosan - glycerol phosphate - whole 

blood were analyzed [39]. For a long time, a large number of 

osteoclasts were observed in the remodeling zone, while the 

bone beams were structurally integrated [40]. 

The composite matrix chitosan-polybutylene-succinate was 

obtained by pressing followed by leaching [41]. Thus, matrices of 

different porosity with variable pore size were obtained. 

Manufacture of nanostructured scaffolds 
In the last decade, many different methods of manufacturing 

three-dimensional biomimetic scaffolds have been developed for 

the needs of tissue engineering. These include electrospinning, 

phase separation, freeze-drying, and self-assembly [42]. 

The principle of the electrospinning technique is that under the 

action of high voltage, repulsive forces are formed in capillary 

tubes filled with a viscous polymer solution, initiating jets of 

outflow from the capillaries [43]. The conservation of repulsive 

forces between the jets eventually leads to the formation of the 

thinnest (nanoscale) polymer filaments, which are collected in a 

special collector [44, 45]. In this case, the thickness of the 

filaments can vary due to variations in viscosity, electrical 

conductivity, and surface tension of the solution, as well as 

technological conditions (hydrostatic pressure in the capillary 

tube, electric field strength, distance between the probe and the 

collector) [46]. 

Phase separation can be induced thermally or by precipitation 

techniques, and is used for the manufacture of porous 

membranes or foamed materials [47]. Compared with 

electrospinning, phase separation has a better potential for the 

manufacture of three-dimensional nanofiber scaffolds with a 

more uniform porous structure [48]. 

Freeze drying is an integral part of the technology for converting 

soluble labile materials into sufficiently solid stable structures, 

initially in the food industry, pharmaceuticals, and enzyme 

industries [49]. This technology (lyophilization) includes three 

main stages: freezing of the solution at a sufficiently low 

temperature (about -70 ° C); transfer of frozen samples to a 

chamber where the pressure is reduced to several millibars. 

Some of the water is removed at this stage (direct sublimation); 

but most of the water is removed by desorption at the third stage 

of final drying [50, 51]. 

Biologically active additives that promote adhesion and 

proliferation of chondrocytes occupy a special place in the 
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creation of chitosan-based scaffolds for cartilage remodeling and 

repair [52]. It is known that such a powerful biologically active 

substance as insulin causes chondral differentiation. Malafaya et 

al. [53] paid attention to chondrogenic differentiation and the 

development of cellular systems that provide the synthesis of 

biomolecules for its stimulation. To do this, various forms of 

insulin were added to the chitosan scaffold used as a potential 

model system for cartilage and cartilage tissues. It has been 

shown that the insulin dose in the system (5%) is the most 

effective in stimulating chondrogenic differentiation. 

Kuo and Wang [54] demonstrated cartilage regeneration in 

hybrid scaffolds consisting of polyethylene oxide and chitosan 

with the addition of CDPGYIGSR peptide. The pores, with an 

average diameter of about 200-250 microns, were 

interconnected and evenly distributed. The high percentage of 

polyethylene oxide in the matrix contributed to an increase in the 

strength of the pore walls. It has been proven that this peptide 

promotes the adhesion of chondrocytes and accelerates their 

proliferation, in addition, the addition of this peptide promotes 

the synthesis of type 2 collagen. 

Results and Discussion 

Our team attempted to create a three-dimensional scaffold based 

on chitosan. Chitin, the starting material for chitosan, was 

obtained from the outer skeleton of crustaceans of the genus 

Pandalus, by washing with tap water, followed by treatment with 

a 10% NaHCO3 solution in the presence of surfactants [55]. After 

settling, repeated washing of the finished product were carried 

out. After that, it was demineralized, finally rinsed, and dried to 

a dry-air state [56]. 

Chitosan was obtained by deacetylation from chitin, previously 

ground to a size of 1-2 × 2-3 mm. Carrying out the process in a 

vacuum of a water jet pump contributed to a significant decrease 

in the concentration of oxygen in the reaction zone, the presence 

of which, as is known, increases the degree of destruction of 

chitin [57, 58]. The filtered chitosan was a highly hydrated 

product with a water content of more than 70%. To prevent 

keratinization, chitosan was dried in a thermostat at 35.0–40.0 

°C to a dry-air state [59, 60]. 

To assess the quality of the chitosan obtained, the indicators 

included in the technical specifications for food chitosan were 

used: appearance, color, taste, and smell [61]. Porous 3D 

matrices based on chitosan were created using the original freeze-

drying method [62, 63]. 10 sterile matrices were created from 

the original chitosan and chitosan produced by InFood LLC 

(Russia). The properties of the matrices were tested in vivo in 

experiments using 24 white male Wistar rats weighing from 180 

g to 240 g. The experimental protocol complied with the ethical 

standards set out in the International Code of Medical Ethics 

(1994), the Rules of Laboratory Practice (GLP), and European 

Community Directives 86/609EEC [64]. The data obtained 

were processed using methods of variational statistics using the 

statistical packages "Statistics for Windows" v.6.0 and Biostat 

(version 4.03). 

The three-dimensional scaffold created by the team of scientists 

was based on chitosan, the physical and chemical properties of 

which are shown in Table 1. It can be noted that the resulting 

drug fully complies with the technical conditions for the main 

parameters and corresponds to the data obtained by other 

researchers [65-67].  

 

Table 1. Physical and chemical properties of chitosan 

Indicator 
The norm for technical 

conditions 
Sample 

Mass fraction of moisture, % ≤ 10.0 9.6 

pH of 1% solution in 2% 

CH3COOH 
≤ 7.5 4.2 

Degree of deacetylation, % ≥ 80% 92% 

 

In the first series of experiments, sterile scaffolds measuring 5×5 

mm (Figure 2) were subcutaneously sewn into the soft tissues 

of the withers area of 10 rats under aseptic conditions. In the 

second series, smaller fragments of the scaffold were implanted 

in the area of artificial femoral defects (channels with a diameter 

of 1.5 mm and a depth of 3 mm). The tissue sections together 

with the implants were removed 4 and 8 weeks after placement 

under the same conditions. 

 

 
Figure 2. The appearance of a porous chitosan scaffold 

 

When removing soft tissue samples, the mobility of the 

regenerants in situ, the state of the surrounding fiber, the 

presence of vessels feeding the scaffold, the severity of the 

adhesive process, and the degree of biodegradation of the 

scaffolds were evaluated. In the field of bone defect replacement, 

attention was paid to the degree of osseointegration, the 

completeness of the closure of the defect, and the density of the 

regeneration [68]. The material was fixed in formalin and after 

rapid alcohol wiring and complete dehydration, it was enclosed 

in paraffin through xylene [69]. After dewaxing, paraffin sections 

5-7 microns thick were stained with hematoxylin and eosin, the 

tricolor Masson method, and picrotoxin Van Gieson [70]. As a 

result, evidence has been obtained for the formation of a full-

fledged cartilage regeneration in place of the chitosan scaffold 

(Table 2). 
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Table 2. Volume fractions of tissue elements in the 

regenerate at the site of implantation of chitosan-based 

matrices to rats (%, M±m) 

Indicator Control 

The timing of the 

experiment 

4 weeks 8 weeks 

Regenerates during heterotopic implantation 

Chitosan fragments 0 39.6±2.6 8.2±0.4 

54.2±Cartilage tissue 0 14.7±1.2 54.2±3. 

Connective tissue 45.6±2.8 34.2±2.4 32.1±2.4 

Vessels 5.3±2.4 11.3±0.9 6.6±2.8 

Adipose tissue 48.7±2.7 0 0 

Regeneration during orthotopic implantation 

Chitosan fragments 0 24.3±1.2 5.6±0.4 

Cartilage tissue 97.6±4.2 44.8±1.1 73.5±5.8 

Connective tissue 2.1±0.3 24.3±1.6 17.2±1.4 

Vessels 0 5.8±0.6 2.8±0.4 

 

The following stages of modification of chitosan-based tissue-

engineered scaffolds are supposed to be carried out along the path 

of increasing the biocompatibility and biodegradation of chitosan, 

which will require the use of new modifying agents and using the 

capabilities of immunohistochemical methods for analyzing tissue 

remodeling. 

Conclusion 

Thus, the analysis of modern world literature and the results of 

our experiments show that the main components of the 

innovative trend and the use of chitosan for tissue engineering of 

articular cartilage are: modification of chitosan scaffold by 

copolymerization with various organic compounds; 

improvement of methods for the preparation of three-

dimensional biomimetic nanostructured chitosan scaffolds; 

intensification of the use of chitosan-based scaffolds in the process 

of creating them to improve their viscosity-strength, 

chondroinductive and antibacterial properties of biologically 

active additives. 
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