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ABSTRACT 

Despite the growing rate of worldwide antibiotic-resistant bacteria, introducing a new antibiotic to the market is significantly 
disappointing. A promising approach to control resistance is antibiotic combination. In the current study, a molecular network-based 
approach is developed to find activated/inactivated ATP-Binding Cassette (ABC) transporters in order to arrange a reasonable 
combination of antibiotics that is useful to inhibit the multidrug-resistant bacteria. To study the possibility of the antibiotic combination, 
RNA-seq analysis was performed on Escherichia coli ST131 treated by ciprofloxacin. Eight transporting systems were extracted from the 
differentially expressed genes including maltose, D/L methionine, spermidine, lipopolysaccharide, lipoprotein, macrolide, L-glutamine, 
and cystine ABC transporters (effluxes). Bacterial exposure to ciprofloxacin, as a typical fluoroquinolone, leads to the activation of the 
first four and inactivation of the last four effluxes. Among all inactivated effluxes, macAB-TolC ABC transporter is specifically responsible 
for expelling the macrolide antibiotics, e.g. erythromycin, and it seems that the combination of ciprofloxacin with erythromycin can 
overcome the resistance to the macrolide class of antibiotics. 
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Introduction   

Antibiotic resistance crisis is described as a coincidence of two 

events, rapid worldwide emergence of resistant bacteria and 

decades of the inability of pharmaceutical sciences to discover a 

new class of antibiotics [1]. If this dilemma remains unresolved, 

deaths due to Antimicrobial Resistance (AMR) will reach more 

than 10 million cases per annum by 2050 [2]. This means, over 

the next 30 years, AMR higher than cancer will be the deadliest 

complication [3].  

 Although the outbreak of resistance in bacteria is basically a 

natural phenomenon, inappropriate use/combination of 

antibiotics greatly has led to resistance evolution [4]. Though the 

drug combination has been relatively helpful in controlling 

antibiotic resistance [5], if the drugs are not combined in a proper 

mechanism, it can boost the resistance complications which is 

called Multidrug Resistance (MDR) [6-8]. Among all 

comprehensive mechanisms of antibiotic resistance including 

antibiotic modification/degradation, antibiotic sequestration, 

antibiotic target modification/bypass/protection, and antibiotic 

efflux pump activation (Figure 1), because of the inherent 

characteristic of the bacterial cell, antibiotic efflux is an 

important mechanism in antibiotic resistance [9]. Efflux pumps 

are a class of multipass transmembrane multi-domain proteins 

called ATP-Binding Cassette (ABC) transporters [10, 11]. ABC 

transporters as an effective controller of bioavailability of 

(bio)chemical compounds are present in all three kingdoms of 

life [12]. ABC transporters not only cause antibiotic resistance, 

but also reduce the cancer cell's access to the drug during the 

pharmacotherapy phase, disrupting part or all of the 

Access this article online 

Website: www.japer.in E-ISSN: 2249-3379 

 

How to cite this article: Tabrizi AE, Tahmoorespur M, Ebrahimie E. 
Resensitizing resistant Escherichia coli ST131 to Macrolide using 
Fluoroquinolones. J Adv Pharm Educ Res. 2021;11(4):29-
34. https://doi.org/10.51847/gVI1vrKJmO 

 

file:///E:/template/105/www.japer.in
https://doi.org/10.51847/gVI1vrKJmO


Ebadi Tabrizi et al.: Resensitizing resistant Escherichia coli ST131 to Macrolide using Fluoroquinolones 

30                                                                       Journal of Advanced Pharmacy Education & Research  | Oct-Dec 2021 | Vol 11 | Issue 4               

chemotherapy [13, 14]. Different chemotherapy agents including 

Doxorubicin, Vinblastine, and Taxol, and also different 

antibiotic agents including macrolides, β-lactams, 

fluoroquinolones, and tetracyclines have encountered the so-

called resistant mechanism [15, 16].    

Human genome as a highly intelligent primate contains only 49 

ABC genes in seven families from ABCA to ABCG [17, 18]. The 

structure of the prokaryotic genome is a bit different because the 

total numbers of ABC systems have a direct relationship with the 

size of the genome, meaning the larger genome contains the 

more ABC genes [12]. On average, 62 ABC transporters are 

functionally and structurally characterized in prokaryotes and 

among them, surprisingly, 13 ABC transporters (~21%) are 

eukaryotic-like transporters [19]. Exactly the same as 

eukaryotes, the prokaryotic ABC transporters act as a semi-

specified evacuator that can expel not all but a specific set of 

molecules [10]. Since one of the mechanisms of resistance 

development is the overexpression of efflux genes [20] and as 

mentioned above, because of the similarities in the development 

of resistance to cancer chemotherapeutic agents and antibiotics, 

it seems that the strategies for overcoming anticancer drug 

resistance can be used to cope with AMR [21, 22]. Maybe 

downregulating the ABC genes would be a useful way to 

resensitize bacteria to current antibiotics. 

 

 
Figure 1. Mechanisms of Resistance to Antibiotics 

Materials and Methods 

The hierarchy of different stages of data preparation, data 

processing, and analysis are shown in Figure 2. RNA-seq NGS 

data was downloaded from the NCBI Gene Expression Omnibus 

(GEO). Datasets are GSM2374959 and GSM2374960, which are 

the control and ciprofloxacin-treated, respectively [23]. RNA-

seq was performed on the MDR E. coli strain UR40 which is 

treated with a clinically relevant concentration of ciprofloxacin 

(2 μg/mL). In this study, two samples from the time point 30 

min were analyzed. One sample is treated (CIP) and the other is 

not treated with ciprofloxacin (control). In order for exploring 

the gene expression pattern, differential gene expression analysis 

was run. To find the background molecular mechanism related 

to so-called sample groups, functional and network enrichment 

analysis was conducted. To facilitate the interpretation of results, 

each network was named as its relevant ABC transporter. A 

comprehensive Protein-protein Interaction (PPI) was 

constructed to identify significant molecular networks using 

Cytoscape stringApp [24], and all differentially expressed genes, 

down and up-regulated, were imported to extract the significant 

networks. To have a strong biological interpretation of the gene 

list, the functional analysis was run on differentially expressed 

genes using Cytoscape ClueGO. ClueGO uses KEGG pathway 

and KEGG compound database to make a comprehensive 

visualization and has the ability to load genes as clusters. This 

ability allows to run the analysis on separate gene sets or to merge 

them to have a combinatorial gene sets.  

 

 

Figure 2. The Hierarchy of Different Stages of Data 

Preparation, Processing, and Analysis 

Results and Discussion  

Based on RNA-seq and gene expression analysis, 589 genes had 

an FDR p-value of less than 0.05. Out of these differentially 

expressed genes, 354 and 235 genes are up- and down-regulated, 

respectively, and were imported to Cytoscape ClueGO 

simultaneously but in two separated clusters. 209 upregulated 

genes (~89%) and 340 downregulated genes (~96%) were 

recognized by ClueGO. 54 upregulated and 50 downregulated 

genes had significant functional annotations (p_value ≤ 0.05). 

For upregulated, downregulated, and a mixture of all 

differentially expressed genes, 5, 8, and 6 annotation terms were 

enriched, which are shown in Figure 3 (a, b, and c, 

respectively). The enriched terms for upregulated genes were 

ribosome-related biosynthesis, flagellar assembly, TCA cycle, 

bacterial chemotaxis, and butanoate metabolism. The enriched 

annotations for downregulated genes were oxidative 

phosphorylation, carbohydrate metabolism 

(glycolysis/gluconeogenesis, starch, and sucrose) metabolism, 

amino acid (alanine, aspartate, and glutamate) metabolism, 

glutathione metabolism, biotin metabolism, nitrogen 

metabolism, streptomycin biosynthesis. Functional analysis on all 

annotated genes without any separation (up and down) leads to 
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having 6 enriched terms, which are pyrimidine metabolism, 

nicotinate and nicotinamide metabolism, lipopolysaccharide 

biosynthesis, RNA degradation, ABC transporters, and two-

component system. The genes corresponding to each enriched 

function are listed in Table 1. 

 

 
a) 

 
b) 

 
c) 

Figure 3. Enriched Annotation Terms for Upregulated (a) 

Downregulated (b) and All Genes (c) 

Table 1. The Distribution of Genes in each Enriched Function 

Type of Regulation 

(Gene No.) 
GO Term 

Gene 

No. 
Genes 

Both 

(90 Genes) 

ABC transporters 31 

fecC, malE, malF, malG, metN, metQ, modF, pstS, sapF, yehW, yejF,cydD, cysP, 

cysU, fliY, ftsE, glnH, glnP, glnQ, lolA, lolD, lolE, lptF, macB, mlaE, mlaF, potB, 

nagK, nagZ, ampD, ycfP 

Two-component system 23 
basR, cheR, glnD, kdpA, kdpB, kdpC, kdpD, kdpE, maeA, pstS, rcsF, tar ,creB, creC, 

dcuB, evgA, fdnG, frdA, glnA, glnG, glnL, narG, zraS 

Pyrimidine metabolism 14 deoD, dut, ndk, nrdA, nrdE, rpoA,carA, carB, cdd, nrdD, nrdF, pyrE, udp, ushA 

Lipopolysaccharide biosynthesis 9 eptC, waaA, waaR, waaU, waaZ,gmhB, hldE, kdsB, waaC 

Nicotinate and nicotinamide 

metabolism 
8 deoD, nadK, sthA,nadE, nadR, pntA, pntB, ushA 

RNA degradation 5 pcnB, rho,dnaK, groL, hfq 

Downregulated 

(50 Genes) 

Oxidative phosphorylation 10 cyoD, cyoE, frdA, ndh, nuoE, nuoH, nuoI, nuoJ, nuoK, nuoL 

Starch and sucrose metabolism 10 bglA, glgB, glgC, glgP, glgX, glk, mak, malP, malQ, malZ 

Glycolysis / Gluconeogenesis 7 adhE, bglA, glk, gpmM, pgk, yeaD, yihX 

Alanine, aspartate and glutamate 

metabolism 
5 argH, aspA, carA, carB, glnA 

Glutathione metabolism 5 gshB, gss, gstB, pepB, pepN 

Biotin metabolism 5 bioB, bioF, bisC, fabB, ynfK 

Nitrogen metabolism 5 glnA, napA, narG, narK, nirB 

Streptomycin biosynthesis 3 glk, rfbA, rfbD 

Upregulated 

(59 Genes) 

Ribosome 32 

rplB, rplD, rplL, rplM, rplP, rplQ, rplT, rplV, rplW, rplY, rpmB, rpmC, rpmE, rpmF, 

rpmG, rpmH, rpsA, rpsB, rpsG, rpsI, rpsQ, rpsS, rrlA, rrlC, rrlD, rrlE, rrlG, rrlH, 

rrsA, rrsB, rrsE, rrsH 

Flagellar assembly 10 flgB, flgK, fliF, fliI, fliM, fliN, fliO, fliP, fliS, fliT 

TCA cycle 7 acnB, fumA, gltA, sdhA, sdhB, sdhC, sdhD 

Butanoate metabolism 5 fadB, sdhA, sdhB, sdhC, sdhD 

Bacterial chemotaxis 5 cheR, fliM, fliN, malE, tar 

 

In general, Table 1 shows that when the bacteria exposed to 

antibiotics, the pattern of gene expression changes in such a way 

that the level of some metabolic pathways including 

carbohydrate, amino acid, and oxidative phosphorylation 

decrease and by activating chemotaxis and flagellar assembly 

pathways, the bacteria is forced to escape from the unfavorable 

(antibiotic-rich) environment [25]. Simultaneously, triggering 

the two-component signal transduction system activates the ABC 
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transporters to empty the bacterial cell from the entered 

antibiotic molecules [26]. These interrelated mechanisms make a 

bacteria resistant to a given antibiotic, e.g. ciprofloxacin. As 

some researchers mentioned, the so-called ABC transporter 

activation is one of the major self-resistance mechanisms in 

bacteria [9]. If one looks more closely at the 31 genes involved in 

the ABC transporter as enriched function, three distinct gene 

networks can be extracted (Figure 4).   

 

 
a) Maltose ABC Transporter (𝐹𝐷𝑅 𝑉𝑎𝑙𝑢𝑒 = 5.09𝐸 − 10) 

 
b) Lipoprotein-Macrolide ABC transporter (𝐹𝐷𝑅 𝑉𝑎𝑙𝑢𝑒 =

0.01) 

 

c) Glutamine ABC transporter (𝐹𝐷𝑅 𝑉𝑎𝑙𝑢𝑒 = 3.19𝐸 − 6) 

Figure 4. Enriched Network for ABC Transporters 

The main genes corresponding to each transporter are shown 

in large circles and small circles are the genes with an indirect 

relationship to each transporter. 

 

The genes enriched in the maltose ABC transporter network are 

all upregulated (Figure 4a). This network contains 7 genes 

including malE, malF, malG, metN, metQ, potB, and lptF, 

which are located in four different operons. The genes malE, 

malF, and malG belong to malEFG, the genes metN and metQ 

belong to metNIQ, the gene lptF belongs to lptFG and finally, 

the potB belongs to potABCD operons [27]. The malEFG, 

metNIQ, and potABCD operons are responsible for the 

biosynthesis of maltose, L/D methionine, and spermidine ABC 

transporters, respectively [28-31]. The lptFG operon alongside 

with lptCAB operon involves in the biosynthesis of the 

lipopolysaccharide ABC transporter system [32, 33].  

The genes enriched in the lipoprotein-macrolide ABC 

transporter network are all downregulated (Figure 4b). This 

network contains 8 genes including lolA, lolD, lolE, macB, nagZ, 

nagK, ompD, ycfP, and consists of two separated ABC 

transporter systems including lipoprotein and macrolide ABC 

transporters [27]. Lipoprotein ABC transporter is synthesized by 

lolA and lolCDE operons [34, 35]. The gene macB is one of two 

genes in macAB operon and takes part in encoding the macrolide 

(macAB-TolC) ABC transport system [36, 37].  

The genes enriched in glutamine ABC transporter network are 

all downregulated (Figure 4c). This network contains 4 genes, 

which are glnH, glnP, glnQ, and fliY. The first three genes 

involve in encoding L-glutamine ABC transporting system [27, 

38]. The last gene, fliY, as a part of fliAZY operon involves in 

cystine ABC transporting system [39, 40].  

As mentioned above, based on the in silico study was conducted 

on RNA-seq data earned from MDR Escherichia coli, eight ABC 

transporting systems have been affected by ciprofloxacin. Among 

all, maltose, D/L methionine, spermidine, and 

lipopolysaccharide ABC transporting systems are activated and 

the rest including lipoprotein, macrolide, L-glutamine, and 

cystine ABC transporting systems are inactivated. Now it is 

known that by exposure to antibiotics, e.g. ciprofloxacin, the 

bacteria have activated and inactivated sets of transporting 

systems, simultaneously. There is experimental evidence that the 

macrolide ABC transporter as one of inactivated transporting 

systems captured in the current study, specified to expel 

macrolide class of antibiotics, e.g. erythromycin, from the 

bacterial cell [41, 42].  

Conclusion 

Escherichia coli ST131 in exposure to ciprofloxacin inactivates the 

macAB-TolC ABC transporter, which can be a promising 

mechanism to surmount the macrolide resistance. Although the 

results of this study have opened a window for the antibiotic 

combination with the aim of counteracting antibiotic resistance, 

for these results to be applicable, laboratory and clinical research 

are needed. 
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